Handout 6

(a) Let $\mathbb{Q} \cap [0,1] = \{x_n\}_{n=1}^{\infty}$ and f_n be a monotone sequence of integrable functions on [0,1] defined by $f_n(x) = \begin{cases} 1 & \text{if } x \in \{x_1, x_2, \dots, x_n\}, \\ 0 & \text{otherwise.} \end{cases}$

Then the limit function f is defined by $f(x) = \lim f_n(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \cap [0,1], \\ 0 & \text{if } x \in [0,1] \setminus \mathbb{Q}. \end{cases}$ Note that the convergence of f_n to f is **not uniform** on [0,1], f is **not integrable** on [0,1],

and $0 = \lim_{n \to \infty} \int_0^1 f_n \neq \int_0^1 \lim_{n \to \infty} f_n$ since $\int_0^1 f$ does not exist.

(b) Define (discontinuous) f_n and (continuous) f on K = [0, 1] by $n \ge 1$ by $f_n(x) = \begin{cases} n & \text{if } x \in (0, \frac{1}{n}), \\ 0 & \text{otherwise,} \end{cases}$ and f(x) = 0.

Note that the convergence of f_n to f is **not uniform** on [0,1], f is Riemann integrable on K, and $1 = \lim_{n \to 0} \int_0^1 f_n \neq \int_0^1 \lim_{n \to 0} f_n = \int_0^1 f = 0.$

(c) Let
$$K = [0, 1]$$
, and (continuous function) f_n be defined for $n \ge 2$ by

$$f_n(x) = \begin{cases} n^2 x & \text{if } x \in [0, \frac{1}{n}], \\ -n^2(x - \frac{2}{n}) & \text{if } x \in [\frac{1}{n}, \frac{2}{n}], \\ 0 & \text{if } x \in [\frac{2}{n}, 1], \end{cases}$$

and (continuous) $f(x) = \lim f_n(x) = 0$ for all $x \in K$. Note that the convergence of f_n to f is **not uniform** on [0, 1], f is integrable on K, and $1 = \lim_{n \to \infty} \int_0^1 f_n \neq \int_0^1 \lim_{n \to \infty} f_n = \int_0^1 f = 0.$

These examples indicate that a convergence theorem for the Riemann integral will require some condition in addition to pointwise convergence.

Theorem. Let $\{f_n\}$ be a sequence of integrable functions that converges uniformly on a closed cell $K \subset \mathbb{R}^p$ to a function f. Then f is integrable and $\int_K f = \lim \int_K f_n$.

Proof. Let $\epsilon > 0$ and N be such that $||f_N - f||_K < \epsilon$. Now let P_N be a partition of K such that if P, Q are refinements of P_N , then $|S_P(f_N, K) - S_Q(f_N, K)| < \epsilon$, for any choice of the intermediat points. If we use the same intermediate points for f and f_N , then $|S_P(f_N, K) - S_P(f, K)| \leq 1$ $||f_N - f||_K c(K) < \epsilon c(K)$. Since a similar estimate holds for the partition Q, then for refinements P, Q of P_N and corresponding Riemann sums, we have $|S_P(f, K) - S_Q(f, K)| \le |S_P(f, K) - S_P(f_N, K)| +$ $|S_P(f_N, K) - S_Q(f_N, K)| + |S_Q(f_N, K) - S_Q(f, K)| \le \epsilon (1 + 2c(K))$. This implies that f is integrable on K.

Since $|\int_K f - \int_K f_n| = |\int_K (f - f_n)| \le ||f - f_n||_K c(K)$, we have $\int_K f = \lim \int_K f_n$. Example. Let K = [0, 1], and f_n be defined by

$$f_n(x) = \begin{cases} \sin(n\pi x) & \text{if } x \in [0, \frac{1}{n}], \\ 0 & \text{if } x \in (\frac{1}{n}, 1]. \end{cases}$$

Note that f_n converges to the zero function on [0, 1], and the convergence is not uniform on K. However, $\lim_{n \to \infty} \int_0^1 f_n = \lim_{n \to \infty} \frac{2}{n\pi} = 0 = \int_0^1 \lim_{n \to \infty} f_n$. This example demonstrates that the uniform convergence is not a necessary condition in the theorem.

Bounded Convergence Theorem. Let $\{f_n\}$ be a sequence of integrable functions on a closed cell $K \subset \mathbb{R}^p$. Suppose that there exists B > 0 such that $||f_n(x)|| \leq B$ for all $n \in \mathbb{N}, x \in K$. If the function $f(x) = \lim f_n(x), x \in K$, exists and is integrable, then $\int_K f = \lim \int_K f_n$.

Remark. This theorem has replaced the uniform convergence of f_n by the uniform boundedness of f_n and the integrability of f.

Outline of the Proof. Since $f(x) = \lim f_n(x)$ for $x \in K$ and $||f_n||_K \leq B$ for all $n \in \mathbb{N}$, there exists M such that $|f(x)| \leq M$ and $|f_n(x)| \leq M$ for all $x \in K$ and all $n \geq 1$. Since $|f - f_n|$ is integrable on K, there exists a subset $A \subseteq K$ such that $c(K \setminus A) = 0$ and $|f - f_n|$ converges uniformly to 0 on A. This implies that $\int_K f = \lim \int_K f_n$.

To find A, we observe that the convergence of f_n to f is not uniform on K if there exists $\epsilon > 0$ such that the set $A_n = \{x \in K \mid \exists j \ge n \text{ such that } |f_j(x) - f(x)| \ge \epsilon\} \neq \emptyset$. Note that

(a) $\{A_n\}$ is a nested sequence, i.e. $A_1 \supseteq A_2 \supseteq \cdots A_n \supseteq A_{n+1} \supseteq \cdots$,

(b)
$$\lim_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} A_n = \emptyset$$
 and $\lim c(A_n) = 0$,

(c) $A_n \neq \emptyset$ for any $\delta < \epsilon$,

(d) f_n converges uniformly to f on each $K \setminus A_j, j \in \mathbb{N}$.

Examples. Use suitable convergence theorem to prove the following.

(a) If a > 0, then $\lim_{n} \int_{0}^{a} e^{-nx} dx = 0$. (b) If 0 < a < 2, then $\lim_{n \to a} \int_{a}^{2} e^{-nx^{2}} dx = 0$. What happens if a = 0?

(c) If
$$a > 0$$
, then $\lim_{n} \int_{a}^{\pi} \frac{\sin nx}{nx} dx = 0$. What happens if $a = 0$?

(d) Let
$$f_n(x) = \frac{nx}{1+nx}$$
 for $x \in [0,1]$, and let $f(x) = \begin{cases} 0 & \text{if } x = 0, \\ 1 & \text{if } x \in (0,1]. \end{cases}$
Then $\lim f_n(x) = f(x)$ for all $x \in [0,1]$ and that $\lim \int_0^1 f_n(x) \, dx = \int_0^1 f(x) \, dx.$

(e) Let $h_n(x) = nxe^{-nx^2}$ for $x \in [0,1]$ and let h(x) = 0. Then $0 = \int_0^1 h(x) \, dx \neq \lim \int_0^1 h_n(x) \, dx = \frac{1}{2}$. Monotone Convergence Theorem. Let $\{f_n\}$ be a monotone sequence of integrable functions on a closed cell $K \subset \mathbb{R}^p$. If the function $f(x) = \lim f_n(x), x \in K$, exists and is integrable, then $\int_K f = \lim \int_K f_n.$

Proof. Suppose that $f_1(x) \leq f_2(x) \leq \cdots \leq f(x)$ for all $x \in K$, then $f_n(x) \in [f_1(x), f(x)]$ for all $n \in \mathbb{N}$ and $||f_n(x)|| \leq |f_1(x)| + |f(x)| \leq \sup_{x \in K} |f_1(x)| + \sup_{x \in K} |f(x)| = B$ for all $x \in K$ and for all $n \in \mathbb{N}$,

so we can apply the Bounded Convergence Theorem to establish that $\int_K f = \lim \int_K f_n$.

Remark. Note that the convergence theorem may fail if K in not compact. **Example.** Let $f_n(x) = \begin{cases} \frac{1}{x} & \text{if } x \in [1, n] \\ 0 & \text{if } x > n. \end{cases}$ Then each f_n is integrable on $[1, \infty)$, and $\{f_n\}$ is a

bounded, monotone sequence that converges uniformly on $[1, \infty)$ to a continuous function f(x) = 1/x. Note that $\lim_{n \to \infty} \int_{1}^{\infty} f_n \neq \int_{1}^{\infty} \lim_{n \to \infty} f_n$ since f is not integrable on $[1, \infty)$.

Example. Let $g_n(x) = \begin{cases} \frac{1}{n} & \text{if } x \in [0, n^2] \\ 0 & \text{if } x > n^2. \end{cases}$ Then each g_n is integrable on $[1, \infty)$, and $\{g_n\}$ is a bounded, monotone sequence that converges $[1,\infty)$ to an integrable function $g(x) \equiv 0$. Note that $\lim \int_1^\infty g_n \neq \int_1^\infty \lim g_n.$ **Definition.** If $\{f_n\}$ is a sequence of functions defined on a subset D of \mathbb{R}^p with values in \mathbb{R}^q , the sequence of partial sums (s_n) of the series $\sum f_n$ is defined for x in D by $s_n(x) = \sum_{j=1}^n f_j(x)$. In case the sequence $\{s_n\}$ converges on D to a function f, we say that the infinite series of functions $\sum f_n$

converges to f on D. If the sequence $\{s_n\}$ converges uniformly on D to a function f, we say that the infinite series of functions $\sum f_n$ converges uniformly to f on D.

Remark (Cauchy Criterion). It is easy to see that $\sum f_k$ converges uniformly on D if and only if for each $\epsilon > 0$, there exists $M = M(\epsilon) \in \mathbb{N}$ such that for any $n, m \ge M$ and any $x \in D$, we have $||s_n(x) - s_m(x)|| < \epsilon$.

Dirichlet's Test Let $\{f_n\}$ be a sequence of functions on $D \subseteq \mathbb{R}^p$ to \mathbb{R}^q such that the partial sums $s_n = \sum_{j=1}^n f_j, n \in \mathbb{N}$, are all bounded. Let $\{\phi_n\}$ be a decreasing sequence of functions on D to \mathbb{R} which

converges uniformly on D to zero. Then the series $\sum_{n=1}^{\infty} (f_n \phi_n)$ converges uniformly on D.

Abel's Test Let $\sum_{n=1}^{\infty} f_n$ be a series of functions on $D \subseteq \mathbb{R}^p$ to \mathbb{R}^q which is uniformly convergent on

D. Let $\{\phi_n\}$ be a sequence of functions on D to \mathbb{R} which is bounded on D. Then the series $\sum_{n=1}^{\infty} (f_n \phi_n)$ converges uniformly on D.

Outline of the proofs. For Dirichlet's test, observe that $|\sum_{j=n}^{m} \phi_j f_j| = |\phi_{m+1}s_m - \phi_n s_{n-1} + \sum_{j=n}^{m} (\phi_j - \phi_n s_{n-1})|$

 $\phi_{j+1}s_j|$. For Abel's test, if $|\phi_j(x)| \le B$ for all $j \in \mathbb{N}$ and for all $x \in D$, then $|\sum_{j=n}^m \phi_j f_j| \le B \sum_{j=n}^m |f_j|$.

Theorem. If f_n is continuous on $D \subseteq \mathbb{R}^p$ to \mathbb{R}^q for each $n \in \mathbb{N}$ and if $\sum f_n$ converges to f uniformly on D, then f is continuous on D.

Term-by-Term Integration Theorem. Suppose that the real-valued functions f_n , $n \in \mathbb{N}$, are integrable on K = [a, b]. If the series $\sum f_n$ converges to f uniformly on K, then f is integrable on K and $\int f - \sum_{n=1}^{\infty} \int f$

and $\int_{K} f = \sum_{j=1}^{\infty} \int_{K} f_{n}$.

Term-by-Term Differentiation Theorem. For each $n \in \mathbb{N}$, let f_n be a real-valued function on K = [a, b] which has a derivative f'_n on K. Suppose that the infinite series $\sum f_n$ converges for at least one point of K and that the series of derivatives $\sum f'_n$ converges uniformly on K. Then there exists a real-valued function f on K such that $\sum f_n$ converges uniformly on K to f. In addition, f has a derivative on K and $f' = \sum f'_n$.

Proof. Suppose that the partial sum s_n of $\sum f_n$ converges at $x_0 \in K$. For each $x \in K$ and any $m, n \in \mathbb{N}$, by the Mean Value Theorem, the equality $s_m(x) - s_n(x) = s_m(x_0) - s_n(x_0) + (x - x_0)(s'_m(y) - s'_n(y))$ holds for some y lying between x and x_0 . The uniform convergence of $\sum f'_n$ and the convergence of $\sum f_n(x_0)$ lead to the uniform convergence of $\sum f_n$ on K.

Suppose that $\sum f'_n$ converges uniformly to g on K. For each $x, c \in K$ and any $m, n \in \mathbb{N}$, by the Mean Value Theorem, the equality $s_m(x) - s_n(x) = s_m(c) - s_n(c) + (x - c)(s'_m(y) - s'_n(y))$ holds for some y lying between x and c. We infer that, when $x \neq c$, then $|\frac{s_m(x) - s_m(c)}{x - c} - \frac{s_n(x) - s_n(c)}{x - c}| \leq ||s'_m - s'_n||_K$. Given $\epsilon > 0$, by the uniform convergence of $\sum f'_n$, there exists a $M(\epsilon)$ such that if $m, n \geq M(\epsilon)$ then $||s'_m - s'_n||_K < \epsilon$. Taking the limit with respect to m, we get $|\frac{f(x) - f(c)}{x - c} - \frac{s_n(x) - s_n(c)}{x - c}| \leq \epsilon$ when $n \geq M(\epsilon)$. Since $g(c) = \lim s'_n(c)$, there exists an $N(\epsilon)$ such that if $n \geq N(\epsilon)$, then $|s'_n(c) - g(c)| < \epsilon$. Now let $L = \max\{M(\epsilon), N(\epsilon)\}$. In view of the existence of $s'_L(c)$, if $0 < |x - c| < \delta_{L(\epsilon)}$, then $|\frac{s_L(x) - s_L(c)}{x - c} - s'_L(c)| < \epsilon$. Therefore, it follows that if $0 < |x - c| < \delta_{L(\epsilon)}$, then $|\frac{f(x) - f(c)}{x - c} - g(c)| < 3\epsilon$. This shows that f'(c) exists and equals g(c).

Example (a). For each $k \in \mathbb{N}$ and for each $x \in [-1, 1]$, define $f_k(x) = \frac{x^k}{k^2}$. Then $\sum_{k=1}^{\infty} f_k$ converges

uniformly on [-1, 1], and $\sum_{k=1}^{\infty} f'_k = \sum_{k=1}^{\infty} \frac{x^{k-1}}{k}$ converges uniformly on any [-r, r], where $0 \le r < 1$. **Example (b).** For each $k \ge 0$ and for each $x \in (-1,1)$, define $f_k(x) = (-1)^k x^k$. Then $\sum f_k$ converges to $f(x) = \frac{1}{1+r}$ uniformly on any [-r, r], where $0 \le r < 1$. **Example (c).** Using (a), one observes that $\sum_{k=1}^{\infty} f'_k = \sum_{k=1}^{\infty} (-1)^k x^{2k}$ converges to $\frac{1}{1+x^2}$ on (-1,1)and it is not convergent at $x = \pm 1$, while $\sum_{k=0}^{\infty} f_k = \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} x^{2k+1}$ converges to $\tan^{-1} x$ on (-1,1)uniformly on [-1, 1]. **Example (d).** Note that $\sum_{k=1}^{\infty} f_k = \sum_{k=1}^{\infty} \frac{\sin kx}{k^2}$ converges uniformly on \mathbb{R} by Cauchy Criterion and the criterion is not applicable for $\sum_{k=1}^{\infty} f'_k = \sum_{k=1}^{\infty} \frac{\cos kx}{k}$ since $\sum_{k=1}^{\infty} \frac{1}{k}$ diverges.

Definition. Let f be defined on $[a, \infty) \times [\alpha, \beta]$ to \mathbb{R} . Suppose that for each $t \in J = [\alpha, \beta]$ the infinite integral $F(t) = \int_a^\infty f(x, t) dx = \lim_{c \to \infty} \int_a^c f(x, t) dx$ exists. We say that this convergence is uniform on J if for every $\epsilon > 0$ there exists a number $M(\epsilon)$ such that if $c \ge M(\epsilon)$ and $t \in J$, then $|F(t) - \int_{a}^{c} f(x,t)dx| < \epsilon.$

Dominated Convergence Theorem. Suppose that f is integrable over [a, c] for all $c \ge a$ and all $t \in J = [\alpha, \beta]$. Suppose that there exists a positive function ϕ defined for $x \geq a$ such that $|f(x,t)| \leq \phi(x)$ for $x \geq a$, $t \in J$, and such that the integral $\int_a^{\infty} \phi(x) dx$ exists. Then, for each $t \in J$, the integral $F(t) = \int_a^{\infty} f(x,t) dx$ is (absolutely) convergent and the convergence is uniform on J.

Dirichlet's Test Let f be continuous on $[a, \infty) \times [\alpha, \beta]$ and suppose that there exists a constant A such that $\left|\int_{a}^{c} f(x,t)dx\right| \leq A$ for $c \geq a, t \in J = [\alpha,\beta]$. Suppose that for each $t \in J$, the function $\phi(x,t)$ is monotone decreasing for $x \ge a$, and converges to 0 as $x \to \infty$ uniformly for $t \in J$. Then the integral $F(t) = \int_{a}^{\infty} f(x,t)\phi(x,t)dx$ converges uniformly on J.

Examples.

- (a) $\int_0^\infty \frac{dx}{x^2 + t^2}$ converges uniformly for $|t| \ge a > 0$.
- (b) $\int_0^\infty \frac{dx}{x^2 + t}$ converges uniformly for $t \ge a > 0$ and diverges when $t \le 0$.
- (c) $\int_0^\infty e^{-x} \cos tx dx$ converges uniformly for $t \in \mathbb{R}$ by the dominated convergence theorem.

(d) $\int_0^\infty e^{-x^2-t^2/x^2} dx$ converges uniformly for $t \in \mathbb{R}$ by the dominated convergence theorem. **Theorem.** Let f be continuous on $K = [a, b] \times [c, d]$ to \mathbb{R} and $F : [c, d] \to \mathbb{R}$ be defined by $F(t) = \int_{a}^{b} f(x,t) dx$. Then F is continuous on [c,d] to \mathbb{R} .

Proof. Let $\epsilon > 0$, since f is uniformly continuous on K, there exists a $\delta(\epsilon) > 0$ such that if t and t_0 belong to [c,d] and $|t-t_0| < \delta(\epsilon)$, then $|f(x,t) - f(x,t_0)| < \epsilon$, for all $x \in [a,b]$. It follows that $|F(t) - F(t_0)| = |\int_a^b (f(x,t) - f(x,t_0)) dx| \le \int_a^b |f(x,t) - f(x,t_0)| dx \le \epsilon(b-a)$, which establishes the continuity of F.

Remark. Suppose that f is continuous on $[a, \infty) \times [c, d]$ to \mathbb{R} and $F(t) = \int_a^\infty f(x, t) dx$ converges uniformly on [c, d], we let $F_n(t) = \int_a^{a+n} f(x, t) dx$. Then F_n is continuous on [c, d] and F is continuous on [c, d] since F_n converges to F uniformly on [c, d].

Theorem. Let f and its partial derivative f_t be continuous on $K = [a, b] \times [c, d]$ to \mathbb{R} . Then the function $F(t) = \int_a^b f(x,t) dx$ is differentiable on (c,d) and $F'(t) = \int_a^b f_t(x,t) dx$ for $t \in (c,d)$. **Proof.** From the uniform continuity of f_t on K we infer that if $\epsilon > 0$, then there is a $\delta(\epsilon) > 0$ such

that if $|t - t_0| < \delta(\epsilon)$, then $|f_t(x,t) - f_t(x,t_0)| < \epsilon$ for all $x \in [a,b]$. Let t, t_0 satisfy this condition and apply the Mean Value Theorem to obtain a t_1 (which may depend on x and lies between tand t_0) such that $f(x,t) - f(x,t_0) = (t - t_0)f_t(x,t_1)$. Combining these two relations, we infer that if $0 < |t - t_0| < \delta(\epsilon)$, then $\left|\frac{f(x,t) - f(x,t_0)}{t - t_0} - f_t(x,t_0)\right| < \epsilon$ for all $x \in [a,b]$. Thus, we obtain $\left|\frac{F(t) - F(t_0)}{t - t_0} - \int_a^b f_t(x,t_0)dx\right| \le \int_a^b \left|\frac{f(x,t) - f(x,t_0)}{t - t_0} - f_t(x,t_0)\right| dx \le \epsilon(b - a)$, which establishes $F'(t) = \int_a^b f_t(x,t)dx$.

Generalization. Let S be a measurable subset of \mathbb{R}^n and T a subset of \mathbb{R}^m . Suppose f(x, y) is a function on $T \times S$ that is integrable as a function of $y \in S$ for each $x \in T$, and let F be defined on T by $F(x) = \int_S f(x, y) dy$ for $x \in T$.

- (a) If f(x, y) is continuous as a function of $x \in T$ for each $y \in S$, and there exists a constant C such that $|f(x, y)| \leq C$ for all $x \in T$ and $y \in S$, then F is continuous on T.

Proof. Let $\{x_j\}$ be a sequence in T converging to $x \in T$. For each $j \in \mathbb{N}$ and $y \in S$, let $f_j(y) = f(x_j, y)$ and let f(y) = f(x, y). Then each f_j and f are integrable on S, and $|f_j(y)| \leq C$ and $f_j(y) \to f(y)$ for all j and all $y \in S$. The bounded convergence theorem implies that $\lim F(x_j) = \lim_{s \to S} \int_S f(x_j, y) dy = \lim_{s \to S} \int_S f_j = \int_S \lim_{s \to S} f(x_j, y) dy = \int_S f(x_j, y) dy = \lim_{s \to S} \int_S f(x_j, y) dy = \int_$

Part (b) is proved by applying the bounded convergence theorem to the sequence of difference quotients $\frac{f(x+h_je_i, y) - f(x, y)}{h_j}$, where e_i denotes the unit vector in the x_i -coordinate and $\{h_j\}$ is a sequence of numbers tending to zero. The uniform bound on these quotients is obtained by applying the mean value theorem .

Examples.

- (a) Let $f(x,t) = \frac{\cos tx}{1+x^2}$ for $x \in [0,\infty)$ and $t \in (-\infty,\infty)$. Then $\int_0^\infty f(x,t)$ converges uniformly for $t \in \mathbb{R}$ by Dominated Convergence Theorem.
- (b) Let $f(x,t) = e^{-x}x^t$ for $x \in [0,\infty)$ and $t \in [0,\infty)$. For any $\beta > 0$, the integral $\int_0^\infty f(x,t)$ converges uniformly for $t \in [0,\beta]$ by Dominated Convergence Theorem. Similarly, the Laplace transform of x^n , $n = 0, 1, 2, \ldots$, defined by $\mathscr{L}\{x^n\}(t) = \int_0^\infty x^n e^{-tx} dx$ also converges uniformly for $t \ge \gamma > 0$ to $\frac{n!}{t^{n+1}}$. For $t \ge 1$, define the gamma function Γ by $\Gamma(t) = \int_0^\infty x^{t-1} e^{-x} dx$. Then it is uniformly convergent on an interval containing t. Note that $\Gamma(t+1) = t\Gamma(t)$ and hence $\Gamma(n+1) = n!$ for any $n \in \mathbb{N}$.
- (c) Let $f(x,t) = e^{-tx} \sin x$ for $x \in [0,\infty)$ and $t \ge \gamma > 0$. Then the integral $F(t) = \int_0^\infty e^{-tx} \sin x dx$ is converges uniformly for $t \ge \gamma > 0$ by Dominated Convergence Theorem and it is called the laplace transform of $\sin x$, denoted by $\mathscr{L}\{\sin x\}(t)$. Note that an elementary calculation shows that $\mathscr{L}\{\sin x\}(t) = \frac{1}{1+t^2}$.
- (d) Let $f(x,t,u) = e^{-tx} \frac{\sin ux}{x}$ for $x \in [0,\infty)$ and $t, u \in [0,\infty)$. By taking $\phi = e^{-tx}/x$ and by applying the Dirichlet's test, one can show that $\int_{\gamma}^{\infty} f(x,t,u)$ converges uniformly for $t \ge \gamma \ge 0$. Note that if $F(t,u) = \mathscr{L}\{\frac{\sin ux}{x}\}(t) = \int_{0}^{\infty} e^{-tx} \frac{\sin ux}{x} dx$, then $\frac{\partial F}{\partial u}(t,u) = \int_{0}^{\infty} e^{-tx} \cos ux dx = \frac{t}{t^2 + u^2}$ and $F(t,u) = \tan^{-1} \frac{u}{t}$. By setting u = 1 and by letting $t \to 0^+$, we obtain that $\int_{0}^{\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}$.

(e) Let $G(t) = \int_0^\infty e^{-x^2 - t^2/x^2} dx$ for t > 0. Then G'(t) = -2G(t) and $G(t) = \frac{\sqrt{\pi}}{2}e^{-2t}$.

(f) Let $F(t) = \int_0^\infty e^{-x^2} \cos tx \, dx$ for $t \in \mathbb{R}$. Then $F'(t) = -\frac{t}{2}F(t)$ and $F(t) = \frac{\sqrt{\pi}}{2}e^{-t^2/4}$.

Leibiniz's Formula. Let f and its partial derivative f_t be continuous on $K = [a, b] \times [c, d]$ to \mathbb{R} and α and β be differentiable functions on [c, d] and have values in [a, b]. Then the function $\phi(t) =$ $\int_{\alpha(t)}^{\beta(t)} f(x,t) dx \text{ is differentiable on } (c,d) \text{ and } \phi'(t) = f(\beta(t),t)\beta'(t) - f(\alpha(t),t)\alpha'(t) + \int_{\alpha(t)}^{\beta(t)} f_t(x,t) dx$ for $t \in (c, d)$.

Proof. Let H be defined for (u, v, t) by $H(u, v, t) = \int_v^u f(x, t) dx$, where u, v belong to [a, b] and t belongs to [c, d]. Then $\phi(t) = H(\beta(t), \alpha(t), t)$. Applying the Chain Rule to obtain the result. Ι \mathbb{R}

interchange Theorem. Let
$$f$$
 be continuous on $K = [a, b] \times [c, d]$ to

Then
$$\int_{c}^{d} \left\{ \int_{a}^{b} f(x,t) dx \right\} dt = \int_{a}^{b} \left\{ \int_{c}^{d} f(x,t) dt \right\} dx.$$

Proof. Since f is uniformly continuous on K, if $\epsilon > 0$ there exists a $\delta(\epsilon) > 0$ such that if $|x - x'| < \delta(\epsilon)$ and $|t-t'| < \delta(\epsilon)$, then $|f(x,t) - f(x',t')| < \epsilon$. Let n be chosen so large that $(b-a)/n < \delta(\epsilon)$ and $(d-c)/n < \delta(\epsilon)$ and divide K into n^2 equal rectangles by dividing [a, b] and [c, d] each into n equal parts. For j = 0, 1, ..., n, we let $x_j = a + (b - a)j/n$, $t_j = c + (d - c)j/n$.

Then
$$\int_{c}^{d} \left\{ \int_{a}^{b} f(x,t) dx \right\} dt = \sum_{i=1}^{n} \sum_{j=1}^{n} \int_{t_{i-1}}^{t_{i}} \left\{ \int_{x_{j-1}}^{x_{j}} f(x,t) dx \right\} dt = \sum_{i=1}^{n} \sum_{j=1}^{n} f(x'_{j},t'_{i})(x_{j}-x_{j-1})(t_{i}-t_{i-1}).$$

$$t_{i-1}$$
)

Similarly,
$$\int_{a}^{b} \left\{ \int_{c}^{d} f(x,t) dt \right\} dx = \sum_{i=1}^{n} \sum_{j=1}^{n} f(x_{j}'',t_{i}'')(x_{j}-x_{j-1})(t_{i}-t_{i-1}).$$

The uniform continuity of f implies that two iterated integrals differ by at most $\epsilon(b-a)(d-c)$. Since $\epsilon > 0$ is arbitrary, the equality of these integrals is confirmed.

Example. Let $A \subseteq \mathbb{R}^2$ be the set consisting of all pairs (i/p, j/p) where p is a prime number, and $i, j = 1, 2, \dots, p-1$. (a) Show that each horizontal and each vertical line in \mathbb{R}^2 intersects A in a finite number (often zero) of points and that A does not have content. Let f be defined on $K = [0, 1] \times [0, 1]$ by f(x,y) = 1 for $(x,y) \in A$ and f(x,y) = 0 otherwise. (b) Show that f is not integrable on K. However, the iterated integrals exist and satisfy $\int_0^1 \left\{ \int_0^1 f(x,y) dx \right\} dy = \int_0^1 \left\{ \int_0^1 f(x,y) dy \right\} dx.$ **Example.** Let $K = [0, 1] \times [0, 1]$ and let $f : K \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} 0 & \text{if either } x \text{ or } y \text{ is irrational,} \\ \frac{1}{n} & \text{if } y \text{ is rational and } x = \frac{m}{n} \text{ where } m \text{ and } n > 0 \text{ are relatively prime integers.} \end{cases}$$

Show that $\int_K f = \int_0^1 \left\{ \int_0^1 f(x,y) dx \right\} dy = 0$, but that $\int_0^1 f(x,y) dy$ does not exist for rational x .
Fubini's Theorem. Let f be continuous on $K = [a,b] \times [c,d]$ to \mathbb{R} . Then $\int_K f = \int_c^d \left\{ \int_a^b f(x,y) dx \right\} dy = \int_a^b \left\{ \int_c^d f(x,y) dy \right\} dx.$
Proof. Let F be defined for $y \in [c,d]$ by $F(y) = \int_a^b f(x,y) dx$. Let $c = y_0 < y_1 < \cdots < y_r = d$
be a partition of $[c,d]$, let $a = x_0 < x_1 < \cdots < x_s = b$ be a partition of $[a,b]$, and let P denote
the partition of K obtained by using the cells $[x_{i-1}, x_i] \times [y_{i-1}, y_i]$. Let y_i^* be any point in $[y_{i-1}, y_i]$

and note that $F(y_j^*) = \int_a^b f(x, y_j^*) dx = \sum_{i=1}^s \int_{x_{i-1}}^{x_i} f(x, y_j^*) dx$. The Mean Value Theorem implies that

for each j, there exists a $x_{ji}^* \in [x_{i-1}, x_i]$ such that $F(y_j^*) = \sum_{i=1}^{s} f(x_{ji}^*, y_j^*)(x_i - x_{i-1})$. We multiply by $(y_j - y_{j-1})$ and add to obtain $\sum_{i=1}^r F(y_j^*)(y_j - y_{j-1}) = \sum_{i=1}^r \sum_{i=1}^s f(x_{ji}^*, y_j^*)(x_i - x_{i-1})(y_j - y_{j-1})$. We have shown that an arbitrary Riemann sum for F on [c, d] is equal to a particular Riemann sum of f on K corresponding to the partition P. Since f is integrable on K, the existence of the iterated integral and its equality with the integral on K is established.

A minor modification of the proof given for the preceding theorem yields the following, slightly stronger, assertion.

Generalization Theorem. Let f be integrable on $K = [a, b] \times [c, d]$ to \mathbb{R} and suppose that for each $y \in [c,d]$, the function $x \mapsto f(x,y)$ of [a,b] into \mathbb{R} is continuous except possibly for a finite number of points, at which it has one-sided limits. Then $\int_K f = \int_c^d \left\{ \int_a^b f(x, y) dx \right\} dy$.

Corollary. Let $A \subseteq \mathbb{R}^2$ be given by $A = \{(x, y) : \alpha(y) \leq x \leq \beta(y), c \leq y \leq d\}$, where α and β are continuous functions on [c, d] with values in [a, b]. If f is continuous on $A \mapsto \mathbb{R}$, then f is integrable on A and $\int_A f = \int_c^d \left\{ \int_{\alpha(y)}^{\beta(y)} f(x, y) dx \right\} dy$. **Proof.** Let $K \supseteq A$ be a closed cell and f_K be the extension of f to K. Since ∂A has content zero, f_K

is integrable on K. Now for each $y \in [c, d]$ the function $x \mapsto f_K(x, y)$ is continuous except possibly at the two points $\alpha(y)$ and $\beta(y)$, at which it has one-sided limits. It follows from the preceding theorem that $\int_A f = \int_K f_K = \int_c^d \left\{ \int_a^b f_K(x, y) dx \right\} dy = \int_c^d \left\{ \int_{\alpha(y)}^{\beta(y)} f(x, y) dx \right\} dy.$ **Example.** Let *R* denote the triangular region in the first quadrant bounded by the lines y = x,

y = 0, and x = 1. Then $\int_0^1 \int_0^1 \frac{\sin x}{\cos x} dx dy = \int_0^1 \int_0^x \frac{\sin x}{\cos x} dy dx$.

Example.
$$\int_{0}^{2} \int_{y/2}^{1} y e^{-x^{3}} dx dy = \int_{0}^{1} \int_{0}^{2x} y e^{-x^{3}} dy dx = \int_{0}^{1} \frac{y^{2}}{2} e^{-x^{3}} |_{0}^{2x} dx$$
$$= \int_{0}^{1} 2x^{2} e^{-x^{3}} dx = \frac{-2e^{-x^{3}}}{3} |_{0}^{1} = \frac{2}{3} (1 - e^{-1}).$$

Example. For $\beta > \alpha > 0$, let $R = [0, \infty) \times [\alpha, \beta]$ and $f(x, t) = e^{-tx}$. Then $\log \frac{\beta}{\alpha} = \int_{\alpha}^{\beta} \frac{1}{t} dt =$ $\int_{\alpha}^{\beta} \int_{0}^{\infty} e^{-tx} dx dt = \int_{0}^{\infty} \int_{\alpha}^{\beta} e^{-tx} dt dx = \int_{0}^{\infty} \frac{e^{-\alpha x} - e^{-\beta x}}{x} dx.$

Lemma. Let $\Omega \subseteq \mathbb{R}^p$ be open, $\phi : \Omega \to \mathbb{R}^p$ belong to Class $C^1(\Omega)$, and A be a bounded set with $\operatorname{Cl}(A) = A \subset \Omega.$

Then there exists a bounded open set Ω_1 with

$$\bar{A} \subset \Omega_1 \subset \bar{\Omega}_1 \subseteq \Omega$$

and a constant M > 0 such that if A is contained in the union of a finite number of closed cells in Ω , with total content at most α , then $\phi(A)$ is contained in the union of a finite number of closed cells in Ω , with total content at most $(\sqrt{p}M)^p \alpha$.

Proof. If $\Omega = \mathbb{R}^p$, let $\delta = 1$; otherwise let $\delta = \frac{1}{2} \inf\{\|a - x\| : a \in \overline{A}, x \notin \Omega\} > 0$. Let

$$\Omega_1 = \{ y \in \mathbb{R}^p : ||y - a|| < \delta \text{ for some } a \in A \}$$
$$M = \sup\{ ||d\phi(x)||_{pp} = \sup_{0 \neq v \in \mathbb{R}^p} ||d\phi_x(v)|| / ||v|| : x \in \Omega_1 \} < \infty$$

If $A \subseteq I_1 \cup \cdots \cup I_m$, where the I_j are closed cells contained in Ω_1 , then it follows that for $x, y \in I_j$ we have

$$\|\phi(x) - \phi(y)\| \le M \|x - y\|.$$

Suppose the side length of I_j is $2r_j$ and take x to be the center of I_j ; then if $y \in I_j$, we have

$$\|x - y\| \le \sqrt{p}r_j.$$

Thus $\phi(I_j)$ is contained in a closed cell of side length $2\sqrt{p}Mr_j$, and $\phi(A)$ is contained in the union of a finite number closed cells with total content at most $(\sqrt{p}M)^p \alpha$.

Theorem. Let $\Omega \subset \mathbb{R}^p$ be open, $\phi : \Omega \to \mathbb{R}^p$ belong to Class $C^1(\Omega)$. If $A \subset \Omega$ has content zero and if $A \subset \Omega$, then $\phi(A)$ has content zero.

Handout 6 (Continued)

Proof. Apply the lemma for arbitrary $\alpha > 0$.

Corollary. Let $r < p, \Omega \subseteq \mathbb{R}^r$ be open, and $\psi : \Omega \to \mathbb{R}^p$ belong to Class $C^1(\Omega)$. If $A \subset \Omega$ is a bounded set with $\overline{A} \subset \Omega$, then $\psi(A)$ has content zero in \mathbb{R}^p . **Proof.** Let $\Omega_0 = \Omega \times \mathbb{R}^{p-r}$. Then Ω_0 is open in \mathbb{R}^p .

Define $\phi: \Omega_0 \to \mathbb{R}^p$ by

$$\phi(x_1,\ldots,x_r,x_{r+1},\ldots,x_p)=\psi(x_1,\ldots,x_r).$$

Thus $\phi \in C^1(\Omega_0)$.

Let $A_0 = A \times \{(0, \ldots, 0)\}$. Then $\bar{A}_0 \subset \Omega_0$ and A_0 has content zero in \mathbb{R}^p . It follows that $\psi(A) = \phi(A_0)$ has content zero in \mathbb{R}^p .

Theorem. Let $\Omega \subseteq \mathbb{R}^p$ be open, $\phi : \Omega \to \mathbb{R}^p$ belong to Class $C^1(\Omega)$. Suppose that A has content, $\overline{A} \subset \Omega$, and the Jacobian determinant $J_{\phi}(x) = \det(d\phi)(x) \neq 0$ for all $x \in \operatorname{Int}(A)$. Then $\phi(A)$ has content.

Proof. Since $\phi(\overline{A})$ is compact and $\phi(A) \subseteq \phi(\overline{A})$, $\phi(A)$ is bounded in \mathbb{R}^p , and $\overline{\phi(A)} \subseteq \phi(\overline{A})$. Now $\partial \phi(A) \cup \operatorname{Int}(\phi(A)) = \overline{\phi(A)} \subseteq \phi(\overline{A}) = \phi(\operatorname{Int}(A) \cup \partial A)$,

and since $\phi \in C^1(\Omega)$ and $J_{\phi}(x) \neq 0$ for all $x \in \text{Int}(A)$, we conclude that $\phi(\text{Int}(A)) \subseteq \text{Int}(\phi(A))$ by the inverse function theorem.

Hence, we infer that $\partial \phi(A) \subseteq \phi(\partial A)$, and $c(\partial \phi(A)) = 0$.

Thus $\phi(A)$ has content.

Corollary. Let $\Omega \subseteq \mathbb{R}^p$ be open, $\phi : \Omega \to \mathbb{R}^p$ belong to Class $C^1(\Omega)$ and be injective on Ω .

If A has content, $\overline{A} \subset \Omega$, and $J_{\phi}(x) \neq 0$ for all $x \in \text{Int}(A)$.

Then
$$\partial \phi(A) = \phi(\partial A)$$

Proof. The proof of the inclusion $\phi(\partial A) \supseteq \partial \phi(A)$ is given in the proof of the proceeding theorem. To establish the identity $\partial \phi(A) = \phi(\partial A)$, we only need to show the that $\phi(\partial A) \subseteq \partial \phi(A)$.

Let $x \in \partial A$, then there exists a sequence $\{x_n\}$ in A and a sequence $\{y_n\}$ in $\Omega \setminus A$, such that $\lim_{n \to \infty} x_n = x = \lim_{n \to \infty} y_n$.

Since ϕ is continuous, we have $\lim_{n \to \infty} \phi(x_n) = \phi(x) = \lim_{n \to \infty} \phi(y_n)$. On the other hand, since ϕ is injective on Ω , $\phi(y_n) \notin \phi(A)$.

Thus $\phi(x) \in \partial \phi(A)$ which implies that $\phi(\partial A) \subseteq \partial \phi(A)$.

Theorem. Let

$$L \in \mathscr{L}(\mathbb{R}^p) = \{L : \mathbb{R}^p \to \mathbb{R}^p \mid L = (l_{ij}) \text{ is an } p \times p \text{ matrix over } \mathbb{R} \}$$

= the space of linear mappings on \mathbb{R}^p ,

and let $A \in \mathscr{D}(\mathbb{R}^p)$.

Then $c(L(A)) = |\det L| c(A).$

Outline of the Proof. If det L = 0, then $L(\mathbb{R}^p) = \mathbb{R}^r$ for some r < p, and that c(L(A)) = 0 for all $A \in \mathscr{D}(\mathbb{R}^p)$.

If det $L \neq 0$, and if $A \in \mathscr{D}(\mathbb{R}^p)$, then $L(A) \in \mathscr{D}(\mathbb{R}^p)$. Also, note that

(1) if $A \in \mathscr{D}(\mathbb{R}^p)$, then L(A) has content and $c(L(A)) \ge 0$.

(2) suppose $A, B \in \mathscr{D}(\mathbb{R}^p)$ and $A \cap B = \emptyset$, then $L(A) \cap L(B) = \emptyset$ and $c(L(A \cup B)) = c(L(A) \cup L(B)) = c(L(A)) + c(L(B))$.

(3) if $x \in \mathbb{R}^p$ and $A \in \mathscr{D}(\mathbb{R}^p)$, then L(x+A) = L(x) + L(A) and c(L(x+A)) = c(L(A)). These imply that

(i) there exists a constant $m_L \ge 0$ such that $c(L(A)) = m_L c(A)$ for all $A \in \mathscr{D}(\mathbb{R}^p)$.

(ii) if $L, M \in \mathscr{L}(\mathbb{R}^p)$ are nonsingular maps and if $A \in \mathscr{D}(\mathbb{R}^p)$, since $m_{L \circ M} c(A) = c(L \circ M(A)) = m_L c(M(A)) = m_L m_M c(A)$, we have $m_{L \circ M} = m_L m_M$.

(iii) one can show that $m_L = |\det L|$ since every nonsingular $L \in \mathscr{L}(\mathbb{R}^p)$ is the composition of linear maps of the following three forms:

(a) $L_1(x_1,\ldots,x_p) = (\alpha x_1, x_2,\ldots,x_p)$ for some $\alpha \neq 0$;

(b)
$$L_2(x_1, \ldots, x_i, x_{i+1}, \ldots, x_p) = (x_1, \ldots, x_{i+1}, x_i, \ldots, x_p);$$

(c) $L_3(x_1,\ldots,x_p) = (x_1 + x_2, x_2,\ldots,x_p).$ If $K_0 = [0,1) \times \cdots \times [0,1)$ in \mathbb{R}^p , then one can show that

$$m_{L_1} = m_{L_1}c(K_0) = c(L_1(K_0)) = |\alpha| = |\det L_1|,$$

$$m_{L_2} = m_{L_2}c(K_0) = c(L_2(K_0)) = 1 = |\det L_2|,$$

$$m_{L_3} = m_{L_3}c(K_0) = c(L_3(K_0)) = 1 = |\det L_3|.$$

Hence, we have $m_L = |\det L|$.

Lemma. Let $K \subset \mathbb{R}^p$ be a closed cell with center 0, Ω be an open set containing K and $\psi : \Omega \to \mathbb{R}^p$ belong to Class $C^1(\Omega)$ and be injective. Suppose further that $J_{\psi}(x) \neq 0$ for $x \in K$ and that $\|\psi(x) - x\| \leq \alpha \|x\|$ for $x \in K$, and some constant $0 < \alpha < \frac{1}{\sqrt{p}}$. Then

$$(1 - \alpha \sqrt{p})^p \le \frac{c(\psi(K))}{c(K)} \le (1 + \alpha \sqrt{p})^p.$$

Proof. If the side length of K is 2r and if $x \in \partial K$, then we have

$$r \le \|x\| \le r\sqrt{p}$$

This implies that

$$\|\psi(x) - x\| \le \alpha \|x\| \le \alpha r \sqrt{p},$$

i.e. $\psi(x)$ is within distance $\alpha r \sqrt{p}$ of $x \in \partial K$. Note that $\mathbb{R}^p \setminus \partial K$ is a disjoint union of two nonempty open sets. Let C_i be an open cell with center 0 and side length $2(1 - \alpha \sqrt{p})r$, C_o be a closed cell with center 0 and side length $2(1 + \alpha \sqrt{p})r$.

Then we have $C_i \subset \psi(K) \subset C_o$, which implies that

$$(1 - \alpha\sqrt{p})^{p}c(K) = (1 - \alpha\sqrt{p})^{p}(2r)^{p} = c(C_{i}) \le c(\psi(K)) \le c(C_{o}) = (1 + \alpha\sqrt{p})^{p}(2r)^{p} = (1 + \alpha\sqrt{p})^{p}c(K).$$

The Jacobian Theorem. Let $\Omega \subseteq \mathbb{R}^p$ be open, $\phi : \Omega \to \mathbb{R}^p$ belong to Class $C^1(\Omega)$, and be injective on Ω with $J_{\phi}(x) \neq 0$ for $x \in \Omega$. Let A have content and satisfy that $\overline{A} \subset \Omega$. If $\epsilon > 0$ is given, then there exists $\gamma > 0$ such that if K is a closed cell with center $x \in A$ and side length less than 2γ , then

$$|J_{\phi}(x)|(1-\epsilon)^p \le \frac{c(\phi(K))}{c(K)} \le |J_{\phi}(x)|(1+\epsilon)^p.$$

Proof. For each $x \in \Omega$, let $L_x = (d\phi(x))^{-1}$, then $1 = \det(L_x \circ d\phi(x)) = (\det L_x) (\det d\phi(x))$, it follows that $\det L_x = \frac{1}{\det d\phi(x)} = \frac{1}{J_{\phi}(x)}$. Let Ω_1 be a bounded open subset of Ω such that

$$\bar{A} \subset \Omega_1 \subset \bar{\Omega}_1 \subseteq \Omega$$

Handout 6 (Continued)

and dist $(A, \partial \Omega_1) = 2\delta > 0$.

Since $\phi \in C^1(\Omega)$, the entries in the standard matrix for L_x are continuous There exists a constant M > 0 such that $||L_x||_{pp} \leq M$ for all $x \in \Omega_1$. Let $0 < \epsilon < 1$ be a constant. Since $d\phi$ is uniformly continuous on Ω_1 , there exists β with $0 < \beta < \delta$ such that if $x_1, x_2 \in \Omega_1$ and $||x_1 - x_2|| \leq \beta$, then $||d\phi(x_1) - d\phi(x_2)||_{pp} \leq \epsilon/M\sqrt{p}$. Now let $x \in A$ be given, hence if $||z|| \leq \beta$, then $x, x + z \in \Omega_1$. Hence,

$$\begin{aligned} \|\phi(x+z) - \phi(x) - d\phi(x)(z)\| &\leq \|z\| \sup_{0 \leq t \leq 1} \|d\phi(x+tz) - d\phi(x)\|_{pp} \\ &\leq \frac{\epsilon}{M\sqrt{p}} \|z\|. \end{aligned}$$

This implies that for a fixed $x \in A$ and for each $||z|| \leq \beta$ if we set

$$\psi(z) = L_x[\phi(x+z) - \phi(x)],$$

Then we have

$$\begin{aligned} \|\psi(z) - z\| &= \|L_x[\phi(x+z) - \phi(x) - d\phi(x)(z)]\| \\ &\leq M \|z\| \sup_{0 \le t \le 1} \|d\phi(x+tz) - d\phi(x)\|_{pp} \\ &\leq \frac{\epsilon}{\sqrt{p}} \|z\| \text{ for } \|z\| \le \beta. \end{aligned}$$

If K_1 is any closed cell with center 0 and contained in the open ball with radius β , then

$$(1-\epsilon)^p \le \frac{c(\psi(K_1))}{c(K_1)} \le (1+\epsilon)^p.$$

It follows that if $K = x + K_1$ then K is a closed cell with center x and that $c(K) = c(K_1)$ and

$$c(\psi(K_1)) = |\det L_x|c(\phi(x+K_1) - \phi(x)) = \frac{1}{J_{\phi}(x)}c(\phi(K)).$$

This establishes the inequality

$$|J_{\phi}(x)|(1-\epsilon)^p \le \frac{c(\phi(K))}{c(K)} \le |J_{\phi}(x)|(1+\epsilon)^p.$$

for those closed cell K with center $x \in A$ and side length less than $2\gamma = 2\beta/\sqrt{p}$.

Change of Variables Theorem. Let $\Omega \subseteq \mathbb{R}^p$ be open, $\phi : \Omega \to \mathbb{R}^p$ belong to Class $C^1(\Omega)$, and be injective on Ω , and $J_{\phi}(x) \neq 0$ for $x \in \Omega$. Suppose that A has content, $\overline{A} \subset \Omega$, and $f : \phi(A) \to \mathbb{R}$ is bounded and continuous. Then $\int_{\Omega \cap \Omega} f = \int_{\Omega} (f \circ \phi) |J_A|$.

Frien
$$\int_{\phi(A)} f = \int_{A} (f \circ \phi) |f_{\phi}|$$
.
Example. Find $\iint_{S} (x^{2} + y^{2}) dA$ if S be the region in the first quadrant bounded by the curves $xy = 1, xy = 3, x^{2} - y^{2} = 1$, and $x^{2} - y^{2} = 4$. Setting $u = x^{2} - y^{2}, v = xy$, we have $\iint_{S} (x^{2} + y^{2}) dA = \int_{v=1}^{v=3} \int_{u=1}^{u=4} \frac{1}{2} du dv = 3$.
Example. $\left(\int_{0}^{\infty} e^{-x^{2}} dx\right)^{2} = \int_{0}^{\infty} \int_{0}^{\infty} e^{-x^{2} - y^{2}} dx dy = \int_{0}^{\pi/2} \int_{0}^{\infty} r e^{-r^{2}} dr d\theta = \frac{\pi}{2}$.
Summary.

(a) Let $A \subset \mathbb{R}^n$. Define what it means to say that A has content (or A is Jordan measurable).

- (b) Let $A \subset \mathbb{R}^n$. Define the content c(A) of A when A has content (or A is Jordan measurable).
- (c) Let $A \subset \mathbb{R}^n$. Define what it means to say that A has content (or measure) c(A) zero.
- (d) Let A be a bounded subset of \mathbb{R}^n , and let f be a bounded function defined on A to \mathbb{R} . Define what it means to say that f is integrable on A. Give a class of A and a class of f from which $\int_A f$ exists.
- (e) Let A be a bounded subset of \mathbb{R}^n and let f be an integrable function defined on A to \mathbb{R} . Discuss the continuity of f on A.
- (f) Let A be a bounded subset of \mathbb{R}^n and let f be a continuous function defined on A to \mathbb{R} . Discuss the integrability of f on A?
- (g) Let A be a bounded subset of \mathbb{R}^n , let f, g be integrable functions defined on A to \mathbb{R} , and let $a, b \in \mathbb{R}$. Discuss the integrability of af + bg and fg on A.
- (h) Let A be a bounded subset of \mathbb{R}^n and let $\{f_n\}$ be a sequence of integrable function defined on A to \mathbb{R} . Assume that $f(x) = \lim f_n(x)$ exists for each $x \in A$. Discuss the integrability of f on A, and conditions on which the equality $\lim \int_A f_n = \int_A \lim f_n$ holds.
- (i) Let $\Omega \subseteq \mathbb{R}^p$ be open and let $\phi : \Omega \to \mathbb{R}^p$ belong to Class $C^1(\Omega)$. Suppose that A has content (or A is measurable), $\overline{A} \subset \Omega$. Discuss the measurability of $\phi(A)$.
- (j) Let $\Omega \subseteq \mathbb{R}^p$ be open and let $\phi : \Omega \to \mathbb{R}^p$ belong to Class $C^1(\Omega)$. Suppose that A has content zero and if $\overline{A} \subset \Omega$, discuss the measurability of $\phi(A)$.
- (k) Let $L \in \mathscr{L}(\mathbb{R}^p) = \{B : \mathbb{R}^p \to \mathbb{R}^p \mid B = (b_{ij}) \text{ is an } p \times p \text{ matrix over } \mathbb{R}\} = \text{the space of linear mappings on } \mathbb{R}^p, \text{ and let } A \in \mathscr{D}(\mathbb{R}^p). \text{ Find } c(L(A)).$
- (1) Let $\Omega \subseteq \mathbb{R}^p$ be open and let $\phi : \Omega \to \mathbb{R}^p$ belong to Class $C^1(\Omega)$. Then $d\phi(x) : \mathbb{R}^p \to \mathbb{R}^p$ is a linear mapping in $\mathscr{L}(\mathbb{R}^p)$. If $J_{\phi(x)} \neq 0$ for all $x \in \Omega$ and suppose that A has content (or A is measurable), $\overline{A} \subset \Omega$. Discuss the geometric meaning of $d\phi(x)(v)$ for each $v \in \mathbb{R}^p$, and the influence of $d\phi(x)$ on the volume element of A at x.