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Question. Let {f,} be a sequence of integrable functions that converges at every point of a cell
K C RP to a function f. Is f integrable on K7 Suppose that f is integrable on K, is it true that

fo:limean

Examples.
(a) Let QN[0,1] = {z,}52, and f,, be a monotone sequence of integrable functions on [0, 1] defined
1 if ce Tty
by fn(x): 1 136{1'17:[’2, » L }

0 otherwise.

1 ifzeQn(o,1],
0 ifzel01]\Q.
Note that the convergence of f,, to f is not uniform on [0, 1], f is not integrable on [0, 1],

1
and 0 = lim/ fn # / lim f,, since fol f does not exist.
0 0

Then the limit function f is defined by f(z) = lim f,(x) =

(b) Define (discontinuous) f,, and (continuous) f on K = [0,1] by n > 1 by
n ifx e (0,21),
n(x) = n and T) =
Jnl(2) {0 otherwise, /(@)
Note that the convergence of f,, to f is not uniform on [0, 1], f is Riemann integrable on K,

and 1 = lim fol fn # fol lim f, = fol f=
(c¢) Let K =10,1], and (continuous function) f,, be defined for n > 2 by

n’z if z €[0,1],
folw) = q —n*(z—2) ifwel 2],
0 if v € [2,1],

and (continuous) f(x) = lim f,(z) = 0 for all z € K. Note that the convergence of f, to f is
not uniform on [0,1], f is integrable on K, and 1 = lim fol fn # fol lim f, = fol f=
These examples indicate that a convergence theorem for the Riemann integral will require some con-
dition in addition to pointwise convergence.
Theorem. Let {f,} be a sequence of integrable functions that converges uniformly on a closed cell
K C RP to a function f. Then f is integrable and [ f = lim [, f,.
Proof. Let ¢ > 0 and N be such that || fy — f|lx < €. Now let Py be a partition of K such that
if P, @ are refinements of Py, then [Sp(fn, K) — Sq(fwn, K)| < ¢, for any choice of the intermedi-
ate points. If we use the same intermediate points for f and fy, then |Sp(fy, K) — Sp(f, K)| <
| fv — fllxc(K) < ec(K). Since a similar estimate holds for the partition @, then for refinements P, Q)
of Py and corresponding Riemann sums, we have |Sp(f, K) — Sqo(f, K)| < |Sp(f, K) —Sp(fn, K)|+
1Sp(fv, K) = Sq(fn, K)|[ + |Sq(fn, K) — Sq(f, K)| < €(1+2¢(K)). This implies that f is integrable
on K.
Since | [ f = f ful = | [e(F = F) < I1f = Fullce(K), we have [ f = lim [y fu.
Example. Let K = [0, 1], and f, be defined by
folz) = sin(nmr) ?f x € [01, 1],
0 if z € (,1].
Note that f,, converges to the zero function on [0, 1], and the convergence is not uniform on K. How-

ever, lim fol fn = lim = 0= fol lim f,,. This example demonstrates that the uniform convergence
is not a necessary condition in the theorem.

Bounded Convergence Theorem. Let {f,} be a sequence of integrable functions on a closed cell
K C RP. Suppose that there exists B > 0 such that || f,(z)|| < B for alln € N, x € K. If the function
f(z) =lim f,(z), z € K, exists and is integrable, then [, f =lim [, f,.

Remark. This theorem has replaced the uniform convergence of f,, by the uniform boundedness of
frn and the integrability of f.
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Outline of the Proof. Since f(z) = lim f,(z) for x € K and || f,,||x < B for all n € N, there exists
M such that |f(x)] < M and |f,(z)| < M for all x € K and all n > 1. Since |f — f,| is integrable
on K, there exists a subset A C K such that ¢(K \ A) =0 and |f — f,,| converges uniformly to 0 on
A. This implies that [ f =lim [, fn.

To find A, we observe that the convergence of f,, to f is not uniform on K if there exists € > 0 such
that the set A, = {x € K| 35 > n such that |f;(x) — f(z)| > €} # (. Note that

(a) {A,} is a nested sequence, i.e. Ay DAy DA, DA D,

(b) lim A, —ﬂA = () and lim ¢(A,,) =0,

n—o00
n=1

(¢) A, # 0 for any § < e,

(d) f, converges uniformly to f on each K \ A;, j € N.
Examples. Use suitable convergence theorem to prove the following.

(a) If a > 0, then lim/ e " dr =0.
" Jo

2
(b) If 0 < a < 2, then lim/ e dz = 0. What happens if a = 0?

sin nx

(¢) If a > 0, then hm/ dx = 0. What happens if a = 07

0 ifx=0
d) Let fu(z) = f 0,1], and let = ’
(d) Let fulz) = gy for @ €0.1), and let f(z) {1 if 2 € (0, 1],
Then lim f,(z) = f(x) for all z € [0,1] and that hmfo fo(x dx—fo dx.
1
(e) Let hy(z) = nze " for x € [0, 1] and let h(z) = 0. ThenO—f0 d:c;éhmfo dx—2

Monotone Convergence Theorem. Let {f,} be a monotone sequence of integrable functions

on a closed cell K C RP. If the function f(z) = lim f,(z), € K, exists and is integrable, then

Jic [ =1m [y fa.

Proof. Suppose that fi(z) < fo(z) < -+ < f(z) for all x € K, then f,(z) € [fi(z), f(z)] for all

n € Nand || fu(2)]] < |fi(@)|+|f(z)] <sup|fi(x)] +sup|f(x)] = B for all x € K and for all n € N,
zeK zeK

so we can apply the Bounded Convergence Theorem to establish that [ o f =lim ) o Jn-
Remark. Note that the convergence theorem may fail if K in not compact.

if x € [1,n]

Example. Let f,(z) = Then each f, is integrable on [1,00), and {f,} is a

x

0 ifzx>n
bounded, monotone sequence that converges uniformly on [1, 00) to a continuous function f(x) = 1/x.
Note that lim [° f, # [~ lim f, since f is not integrable on [1, c0).

1
— ifz €[0,n?]
n

Example. Let g,(z) = Then each g, is integrable on [1,00), and {g,} is a

0 ifx>n%
bounded, monotone sequence that converges [1,00) to an integrable function g(x) = 0. Note that

lim floo gn # floo lim g,,.
Definition. If {f,} is a sequence of functions defined on a subset D of R? with Values in R, the

sequence of partial sums (s,) of the series Y f,, is defined for z in D by s,(x Z fi(x). In case

the sequence {s,} converges on D to a function f, we say that the infinite series of functlons S fn
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converges to f on D. If the sequence {s, }converges uniformly on D to a function f, we say that
the infinite series of functions ) f,, converges uniformly to f on D.

Remark (Cauchy Criterion). It is easy to see that > fx converges uniformly on D if and only
if for each € > 0, there exists M = M (e) € N such that for any n,m > M and any = € D, we have
I50(2) — sm(@)]] < e

Dirichlet’s Test Let {f,} be a sequence of functions on D C RP to R? such that the partial sums

Sp = Z fj» n € N, are all bounded. Let {¢,} be a decreasing sequence of functions on D to R which

J=1
o]

converges uniformly on D to zero. Then the series Z( fn®n) converges uniformly on D.

n=1

Abel’s Test Let Z fn be a series of functions on D C RP to R? which is uniformly convergent on

n=1
D. Let {¢,} be a sequence of functions on D to R which is bounded on D. Then the series Z( fn®n)
n=1

converges uniformly on D.

Outline of the proofs. For Dirichlet’s test, observe that | Z & fil = |Om+15m — PnSn—1+ Z(qﬁj —

¢j+15;|. For Abel’s test, if |¢;(x)] < B for all j € N and for all x € D, then ]Zqﬁjfj] < BZ | fil-
j=n j=n

Theorem. If f,, is continuous on D C R? to R? for each n € N and if ) f,, converges to f uniformly

on D, then f is continuous on D.

Term-by-Term Integration Theorem. Suppose that the real-valued functions f,, n € N, are

integrable on K [a, b]. If the series ) f,, converges to f uniformly on K, then f is integrable on K

and/f— /fn

Terrn-by-Terrn Differentiation Theorem. For each n € N, let f,, be a real-valued function on
K = [a,b] which has a derivative f/ on K. Suppose that the infinite series > f,, converges for at
least one point of K and that the series of derivatives Y f! converges uniformly on K. Then there
exists a real-valued function f on K such that »_ f,, converges uniformly on K to f. In addition, f
has a derivative on K and f' =) f/.
Proof. Suppose that the partial sum s, of > f,, converges at ¢ € K. For each z € K and any m,n €
N, by the Mean Value Theorem, the equality $,,(z) —$,(z) = $m(x0) — s (x0) +(x —x0) (8], (y) — ., (y))
holds for some y lying between = and . The uniform convergence of Y f/ and the convergence of
>~ fu(xg) lead to the uniform convergence of »_ f,, on K.
Suppose that > f/ converges uniformly to g on K. For each z, ¢ € K and any m,n € N, by the Mean
Value Theorem, the equality s,,(z) — s,(2) = $p(c) — sp(c) + (x —¢)(s),(y) — s.,(y)) holds for some y
ol =o€ _onlD =) < g e

r—c
Given € > 0, by the uniform convergence of Y f/, there exists a M(¢) such that if m,n > M(e) then
| f(x) = fle) _ sn(x) = snlc)

r—c T —c
n > M (e). Since g(c) = lim s}, (c), there exists an N(e) such that if n > N(e), then |s/,(c) — g(c)| < e.
Now let L = max{M(e), N(e)}. In view of the existence of s7(c), if 0 < [x — ¢| < L), then
|M—SIL<0)| < €. Therefore, it follows that if 0 < |z —c| < d1(c), then |M—g(c)| <

r—c T —c
3e. This shows that f’(c) exists and equals g(c).

lying between x and ¢. We infer that, when z # ¢, then |

||st, — sh ||k < e. Taking the limit with respect to m, we get | | < e when

k

Example (a). For each £ € N and for each x € [—1, 1], define fi(z) = =

Then Z fr converges

Page 3
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converges uniformly on any [—r,r], where 0 < r < 1.

uniformly on [—1, 1], and Z fi= Z :
=1

Example (b). For each k > 0 and for each # € (—1,1), define fy(z) = (—1)*z*. Then ka
k=0

1
converges to f(z) = T uniformly on any [—r, 7|, where 0 < r < 1.
x

[e.9]

= 1
Example (c). Using (a), one observes that L= —1)k2%* converges to on (—1,1
ple (c). Using (a) IEDIC ges to +—— on (—1,1)

and it is not convergent at x = +1, while Z fr = Z Q(k +)1$2k+1 converges to tan~'x on (—1,1)
k=0 k=0

uniformly on [—1,1].

o oo . k
Example (d). Note that Z fr = Z 8122 ’ converges uniformly on R by Cauchy Criterion and

k=1 k=1
00

o0 oo 1
the criterion is not applicable for Z fr= Z since Z z diverges.
k=1 k=1

k=1

Definition. Let f be defined on [a,00) X [a, F] to R. Suppose that for each t € J = [a, ] the
infinite integral F'(t f flz,t)de = lim._ f f(z,t)dx exists. We say that this convergence is
uniform on J if for every € > 0 there exists a number M (€) such that if ¢ > M (e) and t € J, then

— [7 f(z, t)dz| < e.

Dominated Convergence Theorem. Suppose that f is integrable over [a,c] for all ¢ > a and
all t € J = [a, 3]. Suppose that there exists a positive funotion ¢ defined for x > a such that
|f(z,t)] < o(x) for x > a, t € J, and such that the integral [ ¢(x)dx exists. Then, for each t € J,
the integral F'(t f f(z,t)dz is (absolutely) convergent and the convergence is uniform on J.
Dirichlet’s Test Let f be continuous on [a,00) X [«, 3] and suppose that there exists a constant
A such that | [7 f(z,t)dz| < A for ¢ > a, t € J = [a, 3]. Suppose that for each ¢ € J, the function
o(z,t) is monotone decreasing for x > a, and converges to 0 as x — oo uniformly for ¢ € J. Then

coskzx

the integral F(t f f(z,t)p(x, t)dx converges uniformly on J.
Examples
a) [ x2 > converges uniformly for [¢t| > a > 0.

) fooo 2—x—|—t converges uniformly for ¢ > a > 0 and diverges when t < 0.
x

c) fooo e " costxdx converges uniformly for ¢ € R by the dominated convergence theorem.

(d) fooo e~ ~1/7% 4y converges uniformly for ¢ € R by the dominated convergence theorem.

Theorem. Let f be continuous on K = [a,b] X [¢,d] to R and F : [¢,d] — R be defined by
= fabf(as,t)d:v. Then F' is continuous on [c, d] to R.

Proof. Let € > 0, since f is uniformly continuous on K, there exists a d(¢) > 0 such that if ¢ and

to belong to [¢,d] and |t — to| < 0(¢), then |f(x,t) — f(x,to)| < € for all € [a,b]. It follows that

|E(t) — F(to)] = | 7 (f(a,t) — f(z,t0))dz| < [P|f(x,t) — f(z,to)|dx < e(b— a), which establishes

the continuity of F.

Remark. Suppose that f is continuous on [a,00) X [¢,d] to R and F(t) = [ f(x,t)dz converges

uniformly on [¢, d], we let Fy,(t) = [ @ f(x,t)dx. Then F, is continuous on [c d] and F is continuous

on [, d] since F,, converges to F uniformly on [, d].

Theorem. Let f and its partial derivative f; be continuous on K = [a,b] X [c,d] to R. Then the

function F'(t f f(x,t)dz is differentiable on (¢, d) and F'(t f fi(x, t)dz for t € (c,d).

Proof. Frorn the unlforrn continuity of f; on K we infer that 1f € >0, then there is a d(e) > 0 such

Page 4
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that if |t — to| < (), then |fi(z,t) — fi(x,to)| < € for all @ € [a,b]. Let ¢,y satisfy this condition
and apply the Mean Value Theorem to obtain a t; ( which may depend on z and lies between ¢
and tg) such that f(z,t) — f(z,to) = (t — o) fi(x, t1). Combining these two relations, we infer that

t) — f(z,1
if 0 < |t —to| < d(e), then ’f(x, 35 {(:c, o) _ fi(x,to)] < € for all z € [a,b]. Thus, we obtain
— 1o
F) = Flto)

’t — 7t0
t—to _fabft(xato)dﬂ < fab| (x,t) — f(z,to)

t—1o
= fab fi(z, t)dx.
Generalization. Let S be a measurable subset of R" and T" a subset of R™. Suppose f(z,y) is a
function on T x S that is integrable as a function of y € S for each x € T, and let F' be defined on
T by F(z fs (z,y)dy for x € T.
(a) If f (x y) is continuous as a function of x € T for each y € S, and there exists a constant C' such
that |f(xz,y)| < C for all z € T and y € S, then F' is continuous on 7.

— fi(z,to)|dx < €(b — a), which establishes

(b) Suppose T is open. If f(z,y) is of class C* as a function of x € T for each y € S, and there is a
caonstant C such that |V, f(z,y)| < C for all z € T and y € S, then F is of class C! on T and
F
030]
Proof. Let {z;} be a sequence in T converging to x € T. For each 7 € N and y € S5, let
fi(y) = f(z;,y) and let f(y) = f(x,y). Then each f; and f are integrable on S, and |f;(y)| < C and
fi(y) — f(y) for all j and all y € S. The bounded convergence theorem implies that lim F'(z;) =
lim [ f(zj,y)dy = lim [, f; = [(lim f; = [(lim f(z;,9) = [ f(z,y) = F(z). Hence, F is continu-
ous and this proves (a).

Part (b) is proved by applying the bounded convergence theorem to the sequence of difference quo-
flx +hjei,y) — f(2,y)
B
sequence of numbe]rs tending to zero. The uniform bound on these quotients is obtained by applying
the mean value theorem .

Examples.
costx

(a) Let f(z,t) =
t € R by Dominated Convergence Theorem.

f58 (x,y)dy for z € T.

tients

, where e; denotes the unit vector in the z;—coordinate and {h;} is a

5 for x € [0,00) and t € (—00,00). Then fooo f(z,t) converges uniformly for

(b) Let f(x,t) = ez’ for x € [0,00) and t € [0,00). For any § > 0, the integral [ f(z,1)
converges uniformly for t € [0 ﬁ] by Dominated Convergence Theorem. Similarly, the Laplace
transform of 2™, n = 0,1,2, ..., defined by Z{z"}(t) = [~ 2"e~**dz also converges uniformly

|
for t >~ > 0 to tnn— For t > 1, define the gamma function I' by I'(t) = [;° '~ 'e™"dz. Then

it is uniformly convergent on an interval containing ¢. Note that F(t + 1) = tI'(t) and hence
I'(n+1) =n! for any n € N.

(¢) Let f(z,t) = e ™sina for # € [0,00) and ¢ > v > 0. Then the integral F(t) = [~ e ™ sin zdx
is converges uniformly for t > ~ > 0 by Dominated Convergence Theorem and it is called the
laplace transform of sin x, denoted by Z{sinx}(¢). Note that an elementary calculation shows

that Z{sinx}(t) = e

sin ux

(d) Let f(z,t,u) =e ™
the Dirichlet’s test, one can show that f > f(x,t,u) converges uniformly for t > v > 0. Note

for x € [0,00) and t, u € [0, 00). By taking ¢ = e~ /x and by applying

(9F t
that if F'(t,u) = g{sm ux = [et Sin uxd , then — o = J3 e cosuxdr = PR
and F(t,u) = tan™ 1Y By setting v = 1 and by letting ¢ — 0T, we obtain that foo Smxd:ﬂ = ;T
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(e) Let G(t) = [;"e™™ *=/2*dx for t > 0. Then G'(t) = —2G(t) and G(t) = ge%.

(f) Let F(t) = [;° e~ costadz for t € R. Then F'(t) = —%F(t) and F(t) = \/TE@_{ZM.
Leibiniz’s Formula. Let f and its partial derivative f; be continuous on K = [a,b] X [¢,d] to R
and « and 8 be differentiable functions on [¢, d] and have values in [a, b]. Then the function o(t) =
JI8) f(a, t)da is differentiable on (c,d) and ¢/(t) = f(A(t), t)3'(t) — f(alt), )/ (t) + [0 fulw,t)da
for t € (c,d).

Proof. Let H be defined for (u,v,t) by H(u,v,t) = [ f(x,t)dz, where u,v belong to [a,b] and ¢
belongs to [c¢,d|. Then ¢(t) = H(B(t), a(t),t). Applying the Chain Rule to obtain the result.
Interchange Theorem. Let f be continuous on K = [a,b] X [¢,d] to R.

Then fcd {fab f(x,t)dw} dt = fab {fcdf(:c,t)dt} dr.

Proof. Since f is uniformly continuous on K, if € > 0 there exists a §(e) > 0 such that if |[z—z'| < d(e)
and |t — | < d(e), then |f(x,t) — f(2',t')| < €. Let n be chosen so large that (b — a)/n < d(€) and
(d —¢)/n < 6(¢) and divide K into n? equal rectangles by dividing [a, b] and [c, d] each into n equal
parts. For j =0,1,...,n, welet z; =a+ (b—a)j/n, t; =c+ (d —c)j/n

Then/{/fxtd:p}dt ZZ/ {/ fxtdx}dt ZZf 2 )y — xio1)(t; —

i=1 j=1 i=1 j=1
ti).

Similarly,/ {/ f(x,t) dt} dx—ZZf 2 ) (x5 — i) (b — tia)-

=1 j=1
The uniform continuity of f implies that two iterated integrals differ by at most e(b—a)(d — ¢). Since
€ > 0 is arbitrary, the equality of these integrals is confirmed.
Example. Let A C R? be the set consisting of all pairs (i/p, j/p) where p is a prime number, and
i,j =1,2,...,p—1. (a) Show that each horizontal and each vertical line in R? intersects A in a finite
number (often zero) of points and that A does not have content. Let f be defined on K = [0, 1] x [0, 1]
by f(z,y) = 1 for (z,y) € A and f(x,y) = 0 otherwise. (b) Show that f is not integrable on K.

However, the iterated integrals exist and satisfy fol {fol x y)da:} dy = fo {fo T,y dy} dx.
Example. Let K =[0,1] x [0,1] and let f : K — R be defined by
0  if either x or y is irrational,

flzy) =11

m
— if y is rational and x = — where m and n > 0 are relatively prime integers.

Show that [ f = fo {fo x,y dx} dy = 0, but that fo x,y)dy does not exist for rational z.
Fubini’s Theorem. Let f be continuous on K = [a,b]x[c, d] toR. Then [, f = fc {fa f(x,y)dx} dy
fb{fdf Yy dy}dx.

Proof. Let F be defined for y € [c,d] by F(y f flz,y)de. Let c = yp < y1 < -+ <y, = d

be a partition of [¢,d], let a = xg < z1 < --- < xs = b be a partition of [a,b], and let P denote
the partition of K obtained by using the cells [z;_1, %] X [y;-1,y;]. Let y; be any point in [y; 1, y;]

b S T;
and note that F(y;) = / flz,y;)de = Z / f(z,y;)dx. The Mean Value Theorem implies that

for each j, there exists a x7; € [x;_1, %] such that F(y;) Z f (@i, vi)(xi — xi-1). We multiply by

(y; — yj-1) and add to obtain > F(y})(y; — yj-1) = Z Z S5, y7) (@i — 2i-1)(y; — yj—1). We have
j=1 j=1 i=1
shown that an arbitrary Riemann sum for F' on [c,d] is equal to a particular Riemann sum of f on
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K corresponding to the partition P. Since f is integrable on K, the existence of the iterated integral
and its equality with the integral on K is established.

A minor modification of the proof given for the preceding theorem yields the following, slightly
stronger, assertion.

Generalization Theorem. Let f be integrable on K = [a, b] X [¢,d] to R and suppose that for each
y € [c,d], the function z — f(z,y) of [a,b] into R is continuous except possibly for a finite number

of points, at which it has one-sided limits. Then [, f = fcd {fab f(x, y)dx} dy.

Corollary. Let A C R? be given by A = {(z,y) : a(y) <z < B(y), ¢ <y < d}, where o and 3 are
continuous functions on [c d] with values in [a, b]. If f is continuous on A — R, then f is integrable
on Aand [, f = f { (o) f(x y)dx} dy.

Proof. Let K O A be a closed cell and fx be the extension of f to K. Since 0A has content zero, fx

is integrable on K. Now for each y € [c, d] the function x +— fx(z,y) is continuous except possibly at
the two points a(y) and ((y), at which it has one-sided limits. It follows from the preceding theorem

df b d
that [, f = fic fic = [ LS o,y dy = [0 Flw,yyde} dy.
Example. Let R denote the triangular region in the first quadrant bounded by the lines y = z,

y =0, and z = 1. Then fo f;smxd dy—fo

2x
Example. / / ye ™ drdy = / / ye ™ dyd:c— / e (3 da
y/2

3

2e~ %
= 2%e ™ dp = —— 1—e
J R e e ]

1
Example. For § > a > 0, let R = [0,00) X [, ] and f(z,t) = e **. Then 1og§ = ff %dt =
a

—axr e—ﬂz

J7 2 etaqudt = [ [7 etedtdr = [ e—dw.

Lemma. Let 2 C R? be open, ¢ : Q — R? belong to Class C*(2), and A be a bounded set with
Cl(A)=AcCQ.
Then there exists a bounded open set {2; with

ACcOcOCQ

and a constant M > 0 such that if A is contained in the union of a finite number of closed cells in €2,
with total content at most «, then ¢(A) is contained in the union of a finite number of closed cells
in Q, with total content at most (,/pM)Pcr.
1 _
Proof. If Q =RP, let 6 = 1; otherwise let § = §inf{|]a —z||:a€ A ¢ Q}>0.
Let
O ={yeRP:|ly—al| <dfor somea € A}

M = sup{|de(z)|pp = S [ddz() I/ l|v]| - = € 2} < oo

If AC I U---UlI,, where the I; are closed cells contained in )y, then it follows that for z,y € I;
we have

[o(x) — oY)l < Mz —yl.
Suppose the side length of I; is 2r; and take x to be the center of I}; then if y € I;, we have

lz =yl < v/pr;.

Thus ¢(1;) is contained in a closed cell of side length 2,/pMr;, and ¢(A) is contained in the union
of a finite number closed cells with total content at most (,/pM)Pc.

Theorem. Let Q C R? be open, ¢ : Q — R belong to Class C*(Q2). If A C Q has content zero and
if A C €, then ¢(A) has content zero.
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Proof. Apply the lemma for arbitrary a > 0.
Corollary. Let r < p, Q C R" be open, and ¢ : Q — R” belong to Class C*(Q). If A C Qis a
bounded set with A C €, then 9(A) has content zero in RP.
Proof. Let Qg = Q2 x RP™". Then () is open in RP.
Define ¢ : Qg — R? by
A1,y Ty Tty -, ) = (21,0, 2y).

Thus ¢ € C1(Qy).

Let Ag= A x {(0,...,0)}. Then Ay C Qy and Ay has content zero in RP.

It follows that ¢(A) = ¢(Ay) has content zero in RP.

Theorem. Let 2 C RP be open, ¢ :  — R belong to Class C'(Q). Suppose that A has content,
A C ©Q, and the Jacobian determinant Jy(x) = det(d¢)(z) # 0 for all z € Int(A). Then ¢(A) has
content.

Proof. Since ¢(A) is compact and ¢(A) C ¢(A), #(A) is bounded in R?, and ¢(A) C H(A).

Now 9¢(A) U Int(¢(A)) = ¢(A) C ¢(A) = ¢(Int(A) U DA),

and since ¢ € C1(Q2) and Jy(z) # 0 for all z € Int(A), we conclude that ¢(Int(A)) C Int(¢(A)) by
the inverse function theorem.

Hence, we infer that 0¢(A) C ¢(0A), and c(0¢(A)) =

Thus ¢(A) has content.

Corollary. Let  C R? be open, ¢ : Q — R? belong to Class C'*(€) and be injective on €.

If A has content, A C Q, and Jy(z) # 0 for all z € Int(A).

Then 0¢p(A) = ¢(0A).

Proof. The proof of the inclusion ¢(0A) D d¢(A) is given in the proof of the proceeding theorem.
To establish the identity d¢(A) = ¢(0A), we only need to show the that ¢(0A) C dp(A).

Let © € OA, then there exists a sequence {z,} in A and a sequence {y,} in Q\ A, such that
lim x, =z = lim y,.

Since ¢ is contir:{mus, we have lim ¢(z,) = ¢(z) = 1m O(Yn)-
On the other hand, since ¢ is injective on €, ¢(y,) gé (b( ).
Thus ¢(z) € dp(A) which implies that ¢(8A) C 0¢(A).
Theorem. Let

Le ZRP) = {L:RP - R"|L=(l)isanp x pmatrix over R}
= the space of linear mappings on R?,

and let A € Z(RP).
Then ¢(L(A)) = |det L| ¢(A).
Outline of the Proof. If det L = 0, then L(R?) = R" for some r < p, and that ¢(L(A)) = 0 for all
Aec Z(RP).
If det L # 0, and if A € Z(RP), then L(A) € Z(RP).
Also, note that

(1) if A€ 2(RP), then L(A) has content and ¢(L(A)) > 0.

(2) suppose A, B € 2(RP) and ANB = (), then L(A)NL(B) = 0 and ¢(L(AUB)) = ¢(L(A)UL(B)) =
c(L(A)) + c(L(B)).

(3)if x € R? and A € Z(RP), then L(x + A) = L(x) + L(A) and ¢(L(x + A)) = c¢(L(A)).
These imply that

(i) there exists a constant my > 0 such that ¢(L(A)) = mpc(A) for all A € Z(RP).
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(ii) if L, M € Z(RP) are nonsingular maps and if A € Z(RP), since mropn ¢(A) = ¢(L o M(A)) =
mp c(M(A)) = mpmpc(A), we have mpopr = mpmyy.

(iii) one can show that m; = |det L| since every nonsingular L € Z(RP) is the composition of linear
maps of the following three forms:

(a) Li(z1,...,2p) = (ax1,29,...,1,) for some o # 0;
(b) LQ(.TI, vy Ljy i1y - - - ,l’p) = (.%'1,. oy Lit 1y, Ly v v - 7.Tp);
¢) Ls(z1,...,2p) = (T1 + 22, %2, ..., Tp).

(
If Ko =10,1) x---x[0,1) in RP, then one can show that

mr, = lec(Ko) = C(Ll(Kg)) = |C¥| = |det L1|,
mp, = mr,c(Ko) = c¢L2(Ko)) =1 = | det Ly,
mrp, = mL3c(K0) = C(Lg(Ko)) =1= |det L3|

Hence, we have mj = | det L|.

Lemma. Let K C RP be a closed cell with center 0, {2 be an open set containing K and 1 : {2 — RP
belong to Class C'() and be injective. Suppose further that Jy(x) # 0 for x € K and that

|v(z) — z|| < al|z|| for x € K, and some constant 0 < o < —. Then
p

(-avpr < U <+ avpy,

Proof. If the side length of K is 2r and if x € 0K, then we have

r < el < rv/p.

This implies that
[¥(2) — 2| < allz]| < aryp,

i.e. ¥(x) is within distance ar,/p of z € K.

Note that R? \ 0K is a disjoint union of two nonempty open sets. Let
C; be an open cell with center 0 and side length 2(1 — a./p)r,

C, be a closed cell with center 0 and side length 2(1 + o/p)r.

Then we have C; C ¢(K) C C,, which implies that

(L—aypPe(K) = (L-aypl@r) = o(C) < c((K)) < ¢(C,) = (L+aypP @) = (L ayp)e(K).

The Jacobian Theorem. Let {2 C R be open, ¢ : {2 — R” belong to Class C'(Q), and be injective

on € with Jy(z) # 0 for x € . Let A have content and satisfy that A C Q. If € > 0 is given, then

there exists v > 0 such that if K is a closed cell with center x € A and side length less than 2+, then

(9(K))
)

[To@l(1 =P < =

< | Jo(@)[ (1 +€)”.
Proof. For each z € Q, let L, = (do(z))™!,
then 1 = det(L, o d¢(x)) = (det L,) (det do(z)),

1
it follows that det L, = = .
1 OROWS BA € e T et da(z) | Ju(x)
Let 21 be a bounded open subset of €2 such that

ACcOc CQ
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and dist(A, 0;) = 2§ > 0.

Since ¢ € C''(Q), the entries in the standard matrix for L, are continuous
There exists a constant M > 0 such that ||L,]|,, < M for all z € .

Let 0 < e < 1 be a constant.

Since d¢ is uniformly continuous on €2, there exists 3 with 0 < 8 < ¢ such that

if 21,29 € Q1 and ||z1 — 22| < B, then ||dp(x1) — do(22)]|pp < €/M\/p.
Now let € A be given, hence if ||z|| < 3, then z, v + z € Q.
Hence,
[¢(z + 2) — d(z) —do(z)(2)]| < |z Sup ldo(z + tz) — dp(z)|[pp
€

<
Myp

This implies that for a fixed x € A and for each ||z]| < ( if we set

U(2) = La[o(x + 2) — o(2)];

I

Then we have

[4(2) — ]| [La[o(x + 2) — ¢(z) — do(z)(2)]]

M|z[| sup [|dp(z +tz) — do(z)|lpp
0<t<1

IN

IN

€
—||z|| for ||z]| < .
\/ﬁﬂ | for |||

If K, is any closed cell with center 0 and contained in the open ball with radius 3, then

(1 o G)p < C(¢(K1))

= oK) < (1+¢€)?.

It follows that if K = x + K, then K is a closed cell with center x and that ¢(K) = ¢(K;) and

c(V(K1)) = [ det Ly c(d(x + Ky) — ¢(x)) = c(o(K)).

This establishes the inequality

et - o < A < @i+ o,

for those closed cell K with center x € A and side length less than 2y = 23/, /p.

Change of Variables Theorem. Let Q C R? be open, ¢ : 2 — R? belong to Class C1(£2), and be
injective on €2, and Jy(x) # 0 for x € Q. Suppose that A has content, A C Q, and f : ¢(A) — R is
bounded and continuous.

Then f¢(A) f = fA<f o ¢)|J¢|
Example. Find [[; (2% 4+ y?)dA if S be the region in the first quadrant bounded by the curves
zy =1, 2y =3,2°—y? =1, and % —y® = 4. Setting u = 22 —y?, v = xy, we have [[, (22 +y?)dA =
V= u= 1
f'u:13 fu:14 5 dudv = 3.
2
Example. <fooo €_w2dx) = fooo fooo eV drdy = foﬂ/z fooo re~" drdf = g

Summary.
(a) Let A C R™. Define what it means to say that A has content (or A is Jordan measurable).
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(b) Let A C R™. Define the content ¢(A) of A when A has content (or A is Jordan measurable).
(¢) Let A C R™. Define what it means to say that A has content (or measure) c(A) zero.

(d) Let A be a bounded subset of R™, and let f be a bounded function defined on A to R. Define
what it means to say that f is integrable on A. Give a class of A and a class of f from which

i) 4 exists.

(e) Let A be a bounded subset of R™ and let f be an integrable function defined on A to R. Discuss
the continuity of f on A.

(f) Let A be a bounded subset of R™ and let f be a continuous function defined on A to R. Discuss
the integrability of f on A?

(g) Let A be a bounded subset of R™, let f, g be integrable functions defined on A to R, and let
a,b € R. Discuss the integrability of af 4+ bg and fg on A.

(h) Let A be a bounded subset of R™ and let {f,} be a sequence of integrable function defined on
A to R. Assume that f(z) = lim f,(z) exists for each # € A. Discuss the integrability of f on
A, and conditions on which the equality lim [, f,, = [, lim f, holds.

(i) Let Q@ C RP be open and let ¢ : © — R? belong to Class C'(€2). Suppose that A has content (or
A is measurable), A C Q. Discuss the measurability of ¢(A).

(j) Let Q € R” be open and let ¢ : & — R? belong to Class C*(Q). Suppose that A has content
zero and if A C €, discuss the measurability of ¢(A).

(k) Let L € Z(RP) = {B : R? — RP | B = (b;;)is anp x pmatrix over R} = the space of linear
mappings on R?, and let A € Z(RP). Find ¢(L(A)).

(1) Let © C RP be open and let ¢ : Q — RP belong to Class C*(2). Then d¢(x) : RP — RP is
a linear mapping in Z(RP). If Jy,) # 0 for all 2 € Q and suppose that A has content (or A
is measurable), A C €. Discuss the geometric meaning of d¢(x)(v) for each v € RP, and the
influence of d¢(z) on the volume element of A at z.
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