Question. Let $\left\{f_{n}\right\}$ be a sequence of integrable functions that converges at every point of a cell $K \subset \mathbb{R}^{p}$ to a function f. Is f integrable on K ? Suppose that f is integrable on K, is it true that $\int_{K} f=\lim \int_{K} f_{n} K ?$

Examples.

(a) Let $\mathbb{Q} \cap[0,1]=\left\{x_{n}\right\}_{n=1}^{\infty}$ and f_{n} be a monotone sequence of integrable functions on $[0,1]$ defined by $f_{n}(x)= \begin{cases}1 & \text { if } x \in\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}, \\ 0 & \text { otherwise } .\end{cases}$
Then the limit function f is defined by $f(x)=\lim f_{n}(x)= \begin{cases}1 & \text { if } x \in \mathbb{Q} \cap[0,1], \\ 0 & \text { if } x \in[0,1] \backslash \mathbb{Q} .\end{cases}$
Note that the convergence of f_{n} to f is not uniform on $[0,1], f$ is not integrable on $[0,1]$, and $0=\lim \int_{0}^{1} f_{n} \neq \int_{0}^{1} \lim f_{n}$ since $\int_{0}^{1} f$ does not exist.
(b) Define (discontinuous) f_{n} and (continuous) f on $K=[0,1]$ by $n \geq 1$ by $f_{n}(x)=\left\{\begin{array}{ll}n & \text { if } x \in\left(0, \frac{1}{n}\right), \\ 0 & \text { otherwise, }\end{array}\right.$ and $\quad f(x)=0$.
Note that the convergence of f_{n} to f is not uniform on $[0,1], f$ is Riemann integrable on K, and $1=\lim \int_{0}^{1} f_{n} \neq \int_{0}^{1} \lim f_{n}=\int_{0}^{1} f=0$.
(c) Let $K=[0,1]$, and (continuous function) f_{n} be defined for $n \geq 2$ by
$f_{n}(x)= \begin{cases}n^{2} x & \text { if } x \in\left[0, \frac{1}{n}\right], \\ -n^{2}\left(x-\frac{2}{n}\right) & \text { if } x \in\left[\frac{1}{n}, \frac{2}{n}\right], \\ 0 & \text { if } x \in\left[\frac{2}{n}, 1\right],\end{cases}$
and (continuous) $f(x)=\lim f_{n}(x)=0$ for all $x \in K$. Note that the convergence of f_{n} to f is not uniform on $[0,1], f$ is integrable on K, and $1=\lim \int_{0}^{1} f_{n} \neq \int_{0}^{1} \lim f_{n}=\int_{0}^{1} f=0$.
These examples indicate that a convergence theorem for the Riemann integral will require some condition in addition to pointwise convergence.
Theorem. Let $\left\{f_{n}\right\}$ be a sequence of integrable functions that converges uniformly on a closed cell $K \subset \mathbb{R}^{p}$ to a function f. Then f is integrable and $\int_{K} f=\lim \int_{K} f_{n}$.
Proof. Let $\epsilon>0$ and N be such that $\left\|f_{N}-f\right\|_{K}<\epsilon$. Now let P_{N} be a partition of K such that if P, Q are refinements of P_{N}, then $\left|S_{P}\left(f_{N}, K\right)-S_{Q}\left(f_{N}, K\right)\right|<\epsilon$, for any choice of the intermediate points. If we use the same intermediate points for f and f_{N}, then $\left|S_{P}\left(f_{N}, K\right)-S_{P}(f, K)\right| \leq$ $\left\|f_{N}-f\right\|_{K} c(K)<\epsilon c(K)$. Since a similar estimate holds for the partition Q, then for refinements P, Q of P_{N} and corresponding Riemann sums, we have $\left|S_{P}(f, K)-S_{Q}(f, K)\right| \leq\left|S_{P}(f, K)-S_{P}\left(f_{N}, K\right)\right|+$ $\left|S_{P}\left(f_{N}, K\right)-S_{Q}\left(f_{N}, K\right)\right|+\left|S_{Q}\left(f_{N}, K\right)-S_{Q}(f, K)\right| \leq \epsilon(1+2 c(K))$. This implies that f is integrable on K.
Since $\left|\int_{K} f-\int_{K} f_{n}\right|=\left|\int_{K}\left(f-f_{n}\right)\right| \leq\left\|f-f_{n}\right\|_{K} c(K)$, we have $\int_{K} f=\lim \int_{K} f_{n}$.
Example. Let $K=[0,1]$, and f_{n} be defined by
$f_{n}(x)= \begin{cases}\sin (n \pi x) & \text { if } x \in\left[0, \frac{1}{n}\right], \\ 0 & \text { if } x \in\left(\frac{1}{n}, 1\right] .\end{cases}$
Note that f_{n} converges to the zero function on $[0,1]$, and the convergence is not uniform on K. However, $\lim \int_{0}^{1} f_{n}=\lim \frac{2}{n \pi}=0=\int_{0}^{1} \lim f_{n}$. This example demonstrates that the uniform convergence is not a necessary condition in the theorem.
Bounded Convergence Theorem. Let $\left\{f_{n}\right\}$ be a sequence of integrable functions on a closed cell $K \subset \mathbb{R}^{p}$. Suppose that there exists $B>0$ such that $\left\|f_{n}(x)\right\| \leq B$ for all $n \in \mathbb{N}, x \in K$. If the function $f(x)=\lim f_{n}(x), x \in K$, exists and is integrable, then $\int_{K} f=\lim \int_{K} f_{n}$.
Remark. This theorem has replaced the uniform convergence of f_{n} by the uniform boundedness of f_{n} and the integrability of f.

Outline of the Proof. Since $f(x)=\lim f_{n}(x)$ for $x \in K$ and $\left\|f_{n}\right\|_{K} \leq B$ for all $n \in \mathbb{N}$, there exists M such that $|f(x)| \leq M$ and $\left|f_{n}(x)\right| \leq M$ for all $x \in K$ and all $n \geq 1$. Since $\left|f-f_{n}\right|$ is integrable on K, there exists a subset $A \subseteq K$ such that $c(K \backslash A)=0$ and $\left|f-f_{n}\right|$ converges uniformly to 0 on A. This implies that $\int_{K} f=\lim \int_{K} f_{n}$.
To find A, we observe that the convergence of f_{n} to f is not uniform on K if there exists $\epsilon>0$ such that the set $A_{n}=\left\{x \in K \mid \exists j \geq n\right.$ such that $\left.\left|f_{j}(x)-f(x)\right| \geq \epsilon\right\} \neq \emptyset$. Note that
(a) $\left\{A_{n}\right\}$ is a nested sequence, i.e. $A_{1} \supseteq A_{2} \supseteq \cdots A_{n} \supseteq A_{n+1} \supseteq \cdots$,
(b) $\lim _{n \rightarrow \infty} A_{n}=\bigcap_{n=1}^{\infty} A_{n}=\emptyset$ and $\lim c\left(A_{n}\right)=0$,
(c) $A_{n} \neq \emptyset$ for any $\delta<\epsilon$,
(d) f_{n} converges uniformly to f on each $K \backslash A_{j}, j \in \mathbb{N}$.

Examples. Use suitable convergence theorem to prove the following.
(a) If $a>0$, then $\lim _{n} \int_{0}^{a} e^{-n x} d x=0$.
(b) If $0<a<2$, then $\lim _{n} \int_{a}^{2} e^{-n x^{2}} d x=0$. What happens if $a=0$?
(c) If $a>0$, then $\lim _{n} \int_{a}^{\pi} \frac{\sin n x}{n x} d x=0$. What happens if $a=0$?
(d) Let $f_{n}(x)=\frac{n x}{1+n x}$ for $x \in[0,1]$, and let $f(x)= \begin{cases}0 & \text { if } x=0, \\ 1 & \text { if } x \in(0,1] \text {. }\end{cases}$

Then $\lim f_{n}(x)=f(x)$ for all $x \in[0,1]$ and that $\lim \int_{0}^{1} f_{n}(x) d x=\int_{0}^{1} f(x) d x$.
(e) Let $h_{n}(x)=n x e^{-n x^{2}}$ for $x \in[0,1]$ and let $h(x)=0$. Then $0=\int_{0}^{1} h(x) d x \neq \lim \int_{0}^{1} h_{n}(x) d x=\frac{1}{2}$.

Monotone Convergence Theorem. Let $\left\{f_{n}\right\}$ be a monotone sequence of integrable functions on a closed cell $K \subset \mathbb{R}^{p}$. If the function $f(x)=\lim f_{n}(x), x \in K$, exists and is integrable, then $\int_{K} f=\lim \int_{K} f_{n}$.
Proof. Suppose that $f_{1}(x) \leq f_{2}(x) \leq \cdots \leq f(x)$ for all $x \in K$, then $f_{n}(x) \in\left[f_{1}(x), f(x)\right]$ for all $n \in \mathbb{N}$ and $\left\|f_{n}(x)\right\| \leq\left|f_{1}(x)\right|+|f(x)| \leq \sup _{x \in K}\left|f_{1}(x)\right|+\sup _{x \in K}|f(x)|=B$ for all $x \in K$ and for all $n \in \mathbb{N}$, so we can apply the Bounded Convergence Theorem to establish that $\int_{K} f=\lim \int_{K} f_{n}$.
Remark. Note that the convergence theorem may fail if K in not compact.
Example. Let $f_{n}(x)=\left\{\begin{array}{ll}\frac{1}{x} & \text { if } x \in[1, n] \\ 0 & \text { if } x>n .\end{array}\right.$ Then each f_{n} is integrable on $[1, \infty)$, and $\left\{f_{n}\right\}$ is a bounded, monotone sequence that converges uniformly on $[1, \infty)$ to a continuous function $f(x)=1 / x$. Note that $\lim \int_{1}^{\infty} f_{n} \neq \int_{1}^{\infty} \lim f_{n}$ since f is not integrable on $[1, \infty)$.

Example. Let $g_{n}(x)=\left\{\begin{array}{ll}\frac{1}{n} & \text { if } x \in\left[0, n^{2}\right] \\ 0 & \text { if } x>n^{2} .\end{array}\right.$ Then each g_{n} is integrable on $[1, \infty)$, and $\left\{g_{n}\right\}$ is a bounded, monotone sequence that converges $[1, \infty)$ to an integrable function $g(x) \equiv 0$. Note that $\lim \int_{1}^{\infty} g_{n} \neq \int_{1}^{\infty} \lim g_{n}$.
Definition. If $\left\{f_{n}\right\}$ is a sequence of functions defined on a subset D of \mathbb{R}^{p} with values in \mathbb{R}^{q}, the sequence of partial sums $\left(s_{n}\right)$ of the series $\sum f_{n}$ is defined for x in D by $s_{n}(x)=\sum_{j=1}^{n} f_{j}(x)$. In case the sequence $\left\{s_{n}\right\}$ converges on D to a function f, we say that the infinite series of functions $\sum f_{n}$
converges to f on D. If the sequence $\left\{s_{n}\right\}$ converges uniformly on D to a function f, we say that the infinite series of functions $\sum f_{n}$ converges uniformly to f on D.
Remark (Cauchy Criterion). It is easy to see that $\sum f_{k}$ converges uniformly on D if and only if for each $\epsilon>0$, there exists $M=M(\epsilon) \in \mathbb{N}$ such that for any $n, m \geq M$ and any $x \in D$, we have $\left\|s_{n}(x)-s_{m}(x)\right\|<\epsilon$.
Dirichlet's Test Let $\left\{f_{n}\right\}$ be a sequence of functions on $D \subseteq \mathbb{R}^{p}$ to \mathbb{R}^{q} such that the partial sums $s_{n}=\sum_{j=1}^{n} f_{j}, n \in \mathbb{N}$, are all bounded. Let $\left\{\phi_{n}\right\}$ be a decreasing sequence of functions on D to \mathbb{R} which converges uniformly on D to zero. Then the series $\sum_{n=1}^{\infty}\left(f_{n} \phi_{n}\right)$ converges uniformly on D. Abel's Test Let $\sum_{n=1}^{\infty} f_{n}$ be a series of functions on $D \subseteq \mathbb{R}^{p}$ to \mathbb{R}^{q} which is uniformly convergent on D. Let $\left\{\phi_{n}\right\}$ be a sequence of functions on D to \mathbb{R} which is bounded on D. Then the series $\sum_{n=1}^{\infty}\left(f_{n} \phi_{n}\right)$ converges uniformly on D.
Outline of the proofs. For Dirichlet's test, observe that $\left|\sum_{j=n}^{m} \phi_{j} f_{j}\right|=\mid \phi_{m+1} s_{m}-\phi_{n} s_{n-1}+\sum_{j=n}^{m}\left(\phi_{j}-\right.$ $\phi_{j+1} s_{j} \mid$. For Abel's test, if $\left|\phi_{j}(x)\right| \leq B$ for all $j \in \mathbb{N}$ and for all $x \in D$, then $\left|\sum_{j=n}^{m} \phi_{j} f_{j}\right| \leq B \sum_{j=n}^{m}\left|f_{j}\right|$.
Theorem. If f_{n} is continuous on $D \subseteq \mathbb{R}^{p}$ to \mathbb{R}^{q} for each $n \in \mathbb{N}$ and if $\sum f_{n}$ converges to f uniformly on D, then f is continuous on D.
Term-by-Term Integration Theorem. Suppose that the real-valued functions $f_{n}, n \in \mathbb{N}$, are integrable on $K=[a, b]$. If the series $\sum f_{n}$ converges to f uniformly on K, then f is integrable on K and $\int_{K} f=\sum_{j=1}^{\infty} \int_{K} f_{n}$.
Term-by-Term Differentiation Theorem. For each $n \in \mathbb{N}$, let f_{n} be a real-valued function on $K=[a, b]$ which has a derivative f_{n}^{\prime} on K. Suppose that the infinite series $\sum f_{n}$ converges for at least one point of K and that the series of derivatives $\sum f_{n}^{\prime}$ converges uniformly on K. Then there exists a real-valued function f on K such that $\sum f_{n}$ converges uniformly on K to f. In addition, f has a derivative on K and $f^{\prime}=\sum f_{n}^{\prime}$.
Proof. Suppose that the partial sum s_{n} of $\sum f_{n}$ converges at $x_{0} \in K$. For each $x \in K$ and any $m, n \in$ \mathbb{N}, by the Mean Value Theorem, the equality $s_{m}(x)-s_{n}(x)=s_{m}\left(x_{0}\right)-s_{n}\left(x_{0}\right)+\left(x-x_{0}\right)\left(s_{m}^{\prime}(y)-s_{n}^{\prime}(y)\right)$ holds for some y lying between x and x_{0}. The uniform convergence of $\sum f_{n}^{\prime}$ and the convergence of $\sum f_{n}\left(x_{0}\right)$ lead to the uniform convergence of $\sum f_{n}$ on K.
Suppose that $\sum f_{n}^{\prime}$ converges uniformly to g on K. For each $x, c \in K$ and any $m, n \in \mathbb{N}$, by the Mean Value Theorem, the equality $s_{m}(x)-s_{n}(x)=s_{m}(c)-s_{n}(c)+(x-c)\left(s_{m}^{\prime}(y)-s_{n}^{\prime}(y)\right)$ holds for some y lying between x and c. We infer that, when $x \neq c$, then $\left|\frac{s_{m}(x)-s_{m}(c)}{x-c}-\frac{s_{n}(x)-s_{n}(c)}{x-c}\right| \leq\left\|s_{m}^{\prime}-s_{n}^{\prime}\right\|_{K}$. Given $\epsilon>0$, by the uniform convergence of $\sum f_{n}^{\prime}$, there exists a $M(\epsilon)$ such that if $m, n \geq M(\epsilon)$ then $\left\|s_{m}^{\prime}-s_{n}^{\prime}\right\|_{K}<\epsilon$. Taking the limit with respect to m, we get $\left|\frac{f(x)-f(c)}{x-c}-\frac{s_{n}(x)-s_{n}(c)}{x-c}\right| \leq \epsilon$ when $n \geq M(\epsilon)$. Since $g(c)=\lim s_{n}^{\prime}(c)$, there exists an $N(\epsilon)$ such that if $n \geq N(\epsilon)$, then $\left|s_{n}^{\prime}(c)-g(c)\right|<\epsilon$. Now let $L=\max \{M(\epsilon), N(\epsilon)\}$. In view of the existence of $s_{L}^{\prime}(c)$, if $0<|x-c|<\delta_{L(\epsilon)}$, then $\left|\frac{s_{L}(x)-s_{L}(c)}{x-c}-s_{L}^{\prime}(c)\right|<\epsilon$. Therefore, it follows that if $0<|x-c|<\delta_{L(\epsilon)}$, then $\left|\frac{f(x)-f(c)}{x-c}-g(c)\right|<$ 3ϵ. This shows that $f^{\prime}(c)$ exists and equals $g(c)$.
Example (a). For each $k \in \mathbb{N}$ and for each $x \in[-1,1]$, define $f_{k}(x)=\frac{x^{k}}{k^{2}}$. Then $\sum_{k=1}^{\infty} f_{k}$ converges
uniformly on $[-1,1]$, and $\sum_{k=1}^{\infty} f_{k}^{\prime}=\sum_{k=1}^{\infty} \frac{x^{k-1}}{k}$ converges uniformly on any $[-r, r]$, where $0 \leq r<1$.
Example (b). For each $k \geq 0$ and for each $x \in(-1,1)$, define $f_{k}(x)=(-1)^{k} x^{k}$. Then $\sum_{k=0}^{\infty} f_{k}$ converges to $f(x)=\frac{1}{1+x}$ uniformly on any $[-r, r]$, where $0 \leq r<1$.
Example (c). Using (a), one observes that $\sum_{k=0}^{\infty} f_{k}^{\prime}=\sum_{k=0}^{\infty}(-1)^{k} x^{2 k}$ converges to $\frac{1}{1+x^{2}}$ on $(-1,1)$ and it is not convergent at $x= \pm 1$, while $\sum_{k=0}^{\infty} f_{k}=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{2 k+1} x^{2 k+1}$ converges to $\tan ^{-1} x$ on $(-1,1)$ uniformly on $[-1,1]$.
Example (d). Note that $\sum_{k=1}^{\infty} f_{k}=\sum_{k=1}^{\infty} \frac{\sin k x}{k^{2}}$ converges uniformly on \mathbb{R} by Cauchy Criterion and the criterion is not applicable for $\sum_{k=1}^{\infty} f_{k}^{\prime}=\sum_{k=1}^{\infty} \frac{\cos k x}{k}$ since $\sum_{k=1}^{\infty} \frac{1}{k}$ diverges.
Definition. Let f be defined on $[a, \infty) \times[\alpha, \beta]$ to \mathbb{R}. Suppose that for each $t \in J=[\alpha, \beta]$ the infinite integral $F(t)=\int_{a}^{\infty} f(x, t) d x=\lim _{c \rightarrow \infty} \int_{a}^{c} f(x, t) d x$ exists. We say that this convergence is uniform on J if for every $\epsilon>0$ there exists a number $M(\epsilon)$ such that if $c \geq M(\epsilon)$ and $t \in J$, then $\left|F(t)-\int_{a}^{c} f(x, t) d x\right|<\epsilon$.
Dominated Convergence Theorem. Suppose that f is integrable over $[a, c]$ for all $c \geq a$ and all $t \in J=[\alpha, \beta]$. Suppose that there exists a positive function ϕ defined for $x \geq a$ such that $|f(x, t)| \leq \phi(x)$ for $x \geq a, t \in J$, and such that the integral $\int_{a}^{\infty} \phi(x) d x$ exists. Then, for each $t \in J$, the integral $F(t)=\int_{a}^{\infty} f(x, t) d x$ is (absolutely) convergent and the convergence is uniform on J.
Dirichlet's Test Let f be continuous on $[a, \infty) \times[\alpha, \beta]$ and suppose that there exists a constant A such that $\left|\int_{a}^{c} f(x, t) d x\right| \leq A$ for $c \geq a, t \in J=[\alpha, \beta]$. Suppose that for each $t \in J$, the function $\phi(x, t)$ is monotone decreasing for $x \geq a$, and converges to 0 as $x \rightarrow \infty$ uniformly for $t \in J$. Then the integral $F(t)=\int_{a}^{\infty} f(x, t) \phi(x, t) d x$ converges uniformly on J.

Examples.

(a) $\int_{0}^{\infty} \frac{d x}{x^{2}+t^{2}}$ converges uniformly for $|t| \geq a>0$.
(b) $\int_{0}^{\infty} \frac{d x}{x^{2}+t}$ converges uniformly for $t \geq a>0$ and diverges when $t \leq 0$.
(c) $\int_{0}^{\infty} e^{-x} \cos t x d x$ converges uniformly for $t \in \mathbb{R}$ by the dominated convergence theorem.
(d) $\int_{0}^{\infty} e^{-x^{2}-t^{2} / x^{2}} d x$ converges uniformly for $t \in \mathbb{R}$ by the dominated convergence theorem.

Theorem. Let f be continuous on $K=[a, b] \times[c, d]$ to \mathbb{R} and $F:[c, d] \rightarrow \mathbb{R}$ be defined by $F(t)=\int_{a}^{b} f(x, t) d x$. Then F is continuous on $[c, d]$ to \mathbb{R}.
Proof. Let $\epsilon>0$, since f is uniformly continuous on K, there exists a $\delta(\epsilon)>0$ such that if t and t_{0} belong to $[c, d]$ and $\left|t-t_{0}\right|<\delta(\epsilon)$, then $\left|f(x, t)-f\left(x, t_{0}\right)\right|<\epsilon$, for all $x \in[a, b]$. It follows that $\left|F(t)-F\left(t_{0}\right)\right|=\left|\int_{a}^{b}\left(f(x, t)-f\left(x, t_{0}\right)\right) d x\right| \leq \int_{a}^{b}\left|f(x, t)-f\left(x, t_{0}\right)\right| d x \leq \epsilon(b-a)$, which establishes the continuity of F.
Remark. Suppose that f is continuous on $[a, \infty) \times[c, d]$ to \mathbb{R} and $F(t)=\int_{a}^{\infty} f(x, t) d x$ converges uniformly on $[c, d]$, we let $F_{n}(t)=\int_{a}^{a+n} f(x, t) d x$. Then F_{n} is continuous on $[c, d]$ and F is continuous on $[c, d]$ since F_{n} converges to F uniformly on $[c, d]$.
Theorem. Let f and its partial derivative f_{t} be continuous on $K=[a, b] \times[c, d]$ to \mathbb{R}. Then the function $F(t)=\int_{a}^{b} f(x, t) d x$ is differentiable on (c, d) and $F^{\prime}(t)=\int_{a}^{b} f_{t}(x, t) d x$ for $t \in(c, d)$.
Proof. From the uniform continuity of f_{t} on K we infer that if $\epsilon>0$, then there is a $\delta(\epsilon)>0$ such
that if $\left|t-t_{0}\right|<\delta(\epsilon)$, then $\left|f_{t}(x, t)-f_{t}\left(x, t_{0}\right)\right|<\epsilon$ for all $x \in[a, b]$. Let t, t_{0} satisfy this condition and apply the Mean Value Theorem to obtain a t_{1} (which may depend on x and lies between t and t_{0}) such that $f(x, t)-f\left(x, t_{0}\right)=\left(t-t_{0}\right) f_{t}\left(x, t_{1}\right)$. Combining these two relations, we infer that if $0<\left|t-t_{0}\right|<\delta(\epsilon)$, then $\left|\frac{f(x, t)-f\left(x, t_{0}\right)}{t-t_{0}}-f_{t}\left(x, t_{0}\right)\right|<\epsilon$ for all $x \in[a, b]$. Thus, we obtain $\left|\frac{F(t)-F\left(t_{0}\right)}{t-t_{0}}-\int_{a}^{b} f_{t}\left(x, t_{0}\right) d x\right| \leq \int_{a}^{b}\left|\frac{f(x, t)-f\left(x, t_{0}\right)}{t-t_{0}}-f_{t}\left(x, t_{0}\right)\right| d x \leq \epsilon(b-a)$, which establishes $F^{\prime}(t)=\int_{a}^{b} f_{t}(x, t) d x$.
Generalization. Let S be a measurable subset of \mathbb{R}^{n} and T a subset of \mathbb{R}^{m}. Suppose $f(x, y)$ is a function on $T \times S$ that is integrable as a function of $y \in S$ for each $x \in T$, and let F be defined on T by $F(x)=\int_{S} f(x, y) d y$ for $x \in T$.
(a) If $f(x, y)$ is continuous as a function of $x \in T$ for each $y \in S$, and there exists a constant C such that $|f(x, y)| \leq C$ for all $x \in T$ and $y \in S$, then F is continuous on T.
(b) Suppose T is open. If $f(x, y)$ is of class C^{1} as a function of $x \in T$ for each $y \in S$, and there is a constant C such that $\left|\nabla_{x} f(x, y)\right| \leq C$ for all $x \in T$ and $y \in S$, then F is of class C^{1} on T and $\frac{\partial F}{\partial x_{j}}(x)=\int_{S} \frac{\partial f}{\partial x_{j}}(x, y) d y$ for $x \in T$.
Proof. Let $\left\{x_{j}\right\}$ be a sequence in T converging to $x \in T$. For each $j \in \mathbb{N}$ and $y \in S$, let $f_{j}(y)=f\left(x_{j}, y\right)$ and let $f(y)=f(x, y)$. Then each f_{j} and f are integrable on S, and $\left|f_{j}(y)\right| \leq C$ and $f_{j}(y) \rightarrow f(y)$ for all j and all $y \in S$. The bounded convergence theorem implies that $\lim F\left(x_{j}\right)=$ $\lim \int_{S} f\left(x_{j}, y\right) d y=\lim \int_{S} f_{j}=\int_{S} \lim f_{j}=\int_{S} \lim f\left(x_{j}, y\right)=\int_{S} f(x, y)=F(x)$. Hence, F is continuous and this proves (a).
Part (b) is proved by applying the bounded convergence theorem to the sequence of difference quotients $\frac{f\left(x+h_{j} e_{i}, y\right)-f(x, y)}{h_{j}}$, where e_{i} denotes the unit vector in the x_{i}-coordinate and $\left\{h_{j}\right\}$ is a sequence of numbers tending to zero. The uniform bound on these quotients is obtained by applying the mean value theorem .

Examples.

(a) Let $f(x, t)=\frac{\cos t x}{1+x^{2}}$ for $x \in[0, \infty)$ and $t \in(-\infty, \infty)$. Then $\int_{0}^{\infty} f(x, t)$ converges uniformly for $t \in \mathbb{R}$ by Dominated Convergence Theorem.
(b) Let $f(x, t)=e^{-x} x^{t}$ for $x \in[0, \infty)$ and $t \in[0, \infty)$. For any $\beta>0$, the integral $\int_{0}^{\infty} f(x, t)$ converges uniformly for $t \in[0, \beta]$ by Dominated Convergence Theorem. Similarly, the Laplace transform of $x^{n}, n=0,1,2, \ldots$, defined by $\mathscr{L}\left\{x^{n}\right\}(t)=\int_{0}^{\infty} x^{n} e^{-t x} d x$ also converges uniformly for $t \geq \gamma>0$ to $\frac{n!}{t^{n+1}}$. For $t \geq 1$, define the gamma function Γ by $\Gamma(t)=\int_{0}^{\infty} x^{t-1} e^{-x} d x$. Then it is uniformly convergent on an interval containing t. Note that $\Gamma(t+1)=t \Gamma(t)$ and hence $\Gamma(n+1)=n!$ for any $n \in \mathbb{N}$.
(c) Let $f(x, t)=e^{-t x} \sin x$ for $x \in[0, \infty)$ and $t \geq \gamma>0$. Then the integral $F(t)=\int_{0}^{\infty} e^{-t x} \sin x d x$ is converges uniformly for $t \geq \gamma>0$ by Dominated Convergence Theorem and it is called the laplace transform of $\sin x$, denoted by $\mathscr{L}\{\sin x\}(t)$. Note that an elementary calculation shows that $\mathscr{L}\{\sin x\}(t)=\frac{1}{1+t^{2}}$.
(d) Let $f(x, t, u)=e^{-t x} \frac{\sin u x}{x}$ for $x \in[0, \infty)$ and $t, u \in[0, \infty)$. By taking $\phi=e^{-t x} / x$ and by applying the Dirichlet's test, one can show that $\int_{\gamma}^{\infty} f(x, t, u)$ converges uniformly for $t \geq \gamma \geq 0$. Note that if $F(t, u)=\mathscr{L}\left\{\frac{\sin u x}{x}\right\}(t)=\int_{0}^{\infty} e^{-t x} \frac{\sin u x}{x} d x$, then $\frac{\partial F}{\partial u}(t, u)=\int_{0}^{\infty} e^{-t x} \cos u x d x=\frac{t}{t^{2}+u^{2}}$ and $F(t, u)=\tan ^{-1} \frac{u}{t}$. By setting $u=1$ and by letting $t \rightarrow 0^{+}$, we obtain that $\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}$.
(e) Let $G(t)=\int_{0}^{\infty} e^{-x^{2}-t^{2} / x^{2}} d x$ for $t>0$. Then $G^{\prime}(t)=-2 G(t)$ and $G(t)=\frac{\sqrt{\pi}}{2} e^{-2 t}$.
(f) Let $F(t)=\int_{0}^{\infty} e^{-x^{2}} \cos t x d x$ for $t \in \mathbb{R}$. Then $F^{\prime}(t)=-\frac{t}{2} F(t)$ and $F(t)=\frac{\sqrt{\pi}}{2} e^{-t^{2} / 4}$.

Leibiniz's Formula. Let f and its partial derivative f_{t} be continuous on $K=[a, b] \times[c, d]$ to \mathbb{R} and α and β be differentiable functions on $[c, d]$ and have values in $[a, b]$. Then the function $\phi(t)=$ $\int_{\alpha(t)}^{\beta(t)} f(x, t) d x$ is differentiable on (c, d) and $\phi^{\prime}(t)=f(\beta(t), t) \beta^{\prime}(t)-f(\alpha(t), t) \alpha^{\prime}(t)+\int_{\alpha(t)}^{\beta(t)} f_{t}(x, t) d x$ for $t \in(c, d)$.
Proof. Let H be defined for (u, v, t) by $H(u, v, t)=\int_{v}^{u} f(x, t) d x$, where u, v belong to $[a, b]$ and t belongs to $[c, d]$. Then $\phi(t)=H(\beta(t), \alpha(t), t)$. Applying the Chain Rule to obtain the result.
Interchange Theorem. Let f be continuous on $K=[a, b] \times[c, d]$ to \mathbb{R}.
Then $\int_{c}^{d}\left\{\int_{a}^{b} f(x, t) d x\right\} d t=\int_{a}^{b}\left\{\int_{c}^{d} f(x, t) d t\right\} d x$.
Proof. Since f is uniformly continuous on K, if $\epsilon>0$ there exists a $\delta(\epsilon)>0$ such that if $\left|x-x^{\prime}\right|<\delta(\epsilon)$ and $\left|t-t^{\prime}\right|<\delta(\epsilon)$, then $\left|f(x, t)-f\left(x^{\prime}, t^{\prime}\right)\right|<\epsilon$. Let n be chosen so large that $(b-a) / n<\delta(\epsilon)$ and $(d-c) / n<\delta(\epsilon)$ and divide K into n^{2} equal rectangles by dividing $[a, b]$ and $[c, d]$ each into n equal parts. For $j=0,1, \ldots, n$, we let $x_{j}=a+(b-a) j / n, t_{j}=c+(d-c) j / n$.
Then $\int_{c}^{d}\left\{\int_{a}^{b} f(x, t) d x\right\} d t=\sum_{i=1}^{n} \sum_{j=1}^{n} \int_{t_{i-1}}^{t_{i}}\left\{\int_{x_{j-1}}^{x_{j}} f(x, t) d x\right\} d t=\sum_{i=1}^{n} \sum_{j=1}^{n} f\left(x_{j}^{\prime}, t_{i}^{\prime}\right)\left(x_{j}-x_{j-1}\right)\left(t_{i}-\right.$ $\left.t_{i-1}\right)$.
Similarly, $\int_{a}^{b}\left\{\int_{c}^{d} f(x, t) d t\right\} d x=\sum_{i=1}^{n} \sum_{j=1}^{n} f\left(x_{j}^{\prime \prime}, t_{i}^{\prime \prime}\right)\left(x_{j}-x_{j-1}\right)\left(t_{i}-t_{i-1}\right)$.
The uniform continuity of f implies that two iterated integrals differ by at most $\epsilon(b-a)(d-c)$. Since $\epsilon>0$ is arbitrary, the equality of these integrals is confirmed.
Example. Let $A \subseteq \mathbb{R}^{2}$ be the set consisting of all pairs $(i / p, j / p)$ where p is a prime number, and $i, j=1,2, \ldots, p-1$. (a) Show that each horizontal and each vertical line in \mathbb{R}^{2} intersects A in a finite number (often zero) of points and that A does not have content. Let f be defined on $K=[0,1] \times[0,1]$ by $f(x, y)=1$ for $(x, y) \in A$ and $f(x, y)=0$ otherwise. (b) Show that f is not integrable on K. However, the iterated integrals exist and satisfy $\int_{0}^{1}\left\{\int_{0}^{1} f(x, y) d x\right\} d y=\int_{0}^{1}\left\{\int_{0}^{1} f(x, y) d y\right\} d x$.
Example. Let $K=[0,1] \times[0,1]$ and let $f: K \rightarrow \mathbb{R}$ be defined by
$f(x, y)= \begin{cases}0 & \text { if either } x \text { or } y \text { is irrational, } \\ \frac{1}{n} & \text { if } y \text { is rational and } x=\frac{m}{n} \text { where } m \text { and } n>0 \text { are relatively prime integers. }\end{cases}$
Show that $\int_{K} f=\int_{0}^{1}\left\{\int_{0}^{1} f(x, y) d x\right\} d y=0$, but that $\int_{0}^{1} f(x, y) d y$ does not exist for rational x.
Fubini's Theorem. Let f be continuous on $K=[a, b] \times[c, d]$ to \mathbb{R}. Then $\int_{K} f=\int_{c}^{d}\left\{\int_{a}^{b} f(x, y) d x\right\} d y=$ $\int_{a}^{b}\left\{\int_{c}^{d} f(x, y) d y\right\} d x$.
Proof. Let F be defined for $y \in[c, d]$ by $F(y)=\int_{a}^{b} f(x, y) d x$. Let $c=y_{0}<y_{1}<\cdots<y_{r}=d$ be a partition of $[c, d]$, let $a=x_{0}<x_{1}<\cdots<x_{s}=b$ be a partition of $[a, b]$, and let P denote the partition of K obtained by using the cells $\left[x_{i-1}, x_{i}\right] \times\left[y_{j-1}, y_{j}\right]$. Let y_{j}^{*} be any point in $\left[y_{j-1}, y_{j}\right]$ and note that $F\left(y_{j}^{*}\right)=\int_{a}^{b} f\left(x, y_{j}^{*}\right) d x=\sum_{i=1}^{s} \int_{x_{i-1}}^{x_{i}} f\left(x, y_{j}^{*}\right) d x$. The Mean Value Theorem implies that for each j, there exists a $x_{j i}^{*} \in\left[x_{i-1}, x_{i}\right]$ such that $F\left(y_{j}^{*}\right)=\sum_{i=1}^{s} f\left(x_{j i}^{*}, y_{j}^{*}\right)\left(x_{i}-x_{i-1}\right)$. We multiply by $\left(y_{j}-y_{j-1}\right)$ and add to obtain $\sum_{j=1}^{r} F\left(y_{j}^{*}\right)\left(y_{j}-y_{j-1}\right)=\sum_{j=1}^{r} \sum_{i=1}^{s} f\left(x_{j i}^{*}, y_{j}^{*}\right)\left(x_{i}-x_{i-1}\right)\left(y_{j}-y_{j-1}\right)$. We have shown that an arbitrary Riemann sum for F on $[c, d]$ is equal to a particular Riemann sum of f on
K corresponding to the partition P. Since f is integrable on K, the existence of the iterated integral and its equality with the integral on K is established.
A minor modification of the proof given for the preceding theorem yields the following, slightly stronger, assertion.
Generalization Theorem. Let f be integrable on $K=[a, b] \times[c, d]$ to \mathbb{R} and suppose that for each $y \in[c, d]$, the function $x \mapsto f(x, y)$ of $[a, b]$ into \mathbb{R} is continuous except possibly for a finite number of points, at which it has one-sided limits. Then $\int_{K} f=\int_{c}^{d}\left\{\int_{a}^{b} f(x, y) d x\right\} d y$.
Corollary. Let $A \subseteq \mathbb{R}^{2}$ be given by $A=\{(x, y): \alpha(y) \leq x \leq \beta(y), c \leq y \leq d\}$, where α and β are continuous functions on $[c, d]$ with values in $[a, b]$. If f is continuous on $A \mapsto \mathbb{R}$, then f is integrable on A and $\int_{A} f=\int_{c}^{d}\left\{\int_{\alpha(y)}^{\beta(y)} f(x, y) d x\right\} d y$.
Proof. Let $K \supseteq A$ be a closed cell and f_{K} be the extension of f to K. Since ∂A has content zero, f_{K} is integrable on K. Now for each $y \in[c, d]$ the function $x \mapsto f_{K}(x, y)$ is continuous except possibly at the two points $\alpha(y)$ and $\beta(y)$, at which it has one-sided limits. It follows from the preceding theorem that $\int_{A} f=\int_{K} f_{K}=\int_{c}^{d}\left\{\int_{a}^{b} f_{K}(x, y) d x\right\} d y=\int_{c}^{d}\left\{\int_{\alpha(y)}^{\beta(y)} f(x, y) d x\right\} d y$.
Example. Let R denote the triangular region in the first quadrant bounded by the lines $y=x$, $y=0$, and $x=1$. Then $\int_{0}^{1} \int_{y}^{1} \frac{\sin x}{x} d x d y=\int_{0}^{1} \int_{0}^{x} \frac{\sin x}{x} d y d x$.
Example. $\int_{0}^{2} \int_{y / 2}^{1} y e^{-x^{3}} d x d y=\int_{0}^{1} \int_{0}^{2 x} y e^{-x^{3}} d y d x=\left.\int_{0}^{1} \frac{y^{2}}{2} e^{-x^{3}}\right|_{0} ^{2 x} d x$
$=\int_{0}^{1} 2 x^{2} e^{-x^{3}} d x=\left.\frac{-2 e^{-x^{3}}}{3}\right|_{0} ^{1}=\frac{2}{3}\left(1-e^{-1}\right)$.
Example. For $\beta>\alpha>0$, let $R=[0, \infty) \times[\alpha, \beta]$ and $f(x, t)=e^{-t x}$. Then $\log \frac{\beta}{\alpha}=\int_{\alpha}^{\beta} \frac{1}{t} d t=$ $\int_{\alpha}^{\beta} \int_{0}^{\infty} e^{-t x} d x d t=\int_{0}^{\infty} \int_{\alpha}^{\beta} e^{-t x} d t d x=\int_{0}^{\infty} \frac{e^{-\alpha x}-e^{-\beta x}}{x} d x$.
Lemma. Let $\Omega \subseteq \mathbb{R}^{p}$ be open, $\phi: \Omega \rightarrow \mathbb{R}^{p}$ belong to Class $C^{1}(\Omega)$, and A be a bounded set with $\mathrm{Cl}(A)=\bar{A} \subset \Omega$.
Then there exists a bounded open set Ω_{1} with

$$
\bar{A} \subset \Omega_{1} \subset \bar{\Omega}_{1} \subseteq \Omega
$$

and a constant $M>0$ such that if A is contained in the union of a finite number of closed cells in Ω, with total content at most α, then $\phi(A)$ is contained in the union of a finite number of closed cells in Ω, with total content at most $(\sqrt{p} M)^{p} \alpha$.
Proof. If $\Omega=\mathbb{R}^{p}$, let $\delta=1$; otherwise let $\delta=\frac{1}{2} \inf \{\|a-x\|: a \in \bar{A}, x \notin \Omega\}>0$.
Let

$$
\begin{gathered}
\Omega_{1}=\left\{y \in \mathbb{R}^{p}:\|y-a\|<\delta \text { for some } a \in A\right\} \\
M=\sup \left\{\|d \phi(x)\|_{p p}=\sup _{0 \neq v \in \mathbb{R}^{p}}\left\|d \phi_{x}(v)\right\| /\|v\|: x \in \Omega_{1}\right\}<\infty .
\end{gathered}
$$

If $A \subseteq I_{1} \cup \cdots \cup I_{m}$, where the I_{j} are closed cells contained in Ω_{1}, then it follows that for $x, y \in I_{j}$ we have

$$
\|\phi(x)-\phi(y)\| \leq M\|x-y\| .
$$

Suppose the side length of I_{j} is $2 r_{j}$ and take x to be the center of I_{j}; then if $y \in I_{j}$, we have

$$
\|x-y\| \leq \sqrt{p} r_{j}
$$

Thus $\phi\left(I_{j}\right)$ is contained in a closed cell of side length $2 \sqrt{p} M r_{j}$, and $\phi(A)$ is contained in the union of a finite number closed cells with total content at most $(\sqrt{p} M)^{p} \alpha$.
Theorem. Let $\Omega \subseteq \mathbb{R}^{p}$ be open, $\phi: \Omega \rightarrow \mathbb{R}^{p}$ belong to Class $C^{1}(\Omega)$. If $A \subset \Omega$ has content zero and if $\bar{A} \subset \Omega$, then $\phi(A)$ has content zero.

Proof. Apply the lemma for arbitrary $\alpha>0$.
Corollary. Let $r<p, \Omega \subseteq \mathbb{R}^{r}$ be open, and $\psi: \Omega \rightarrow \mathbb{R}^{p}$ belong to Class $C^{1}(\Omega)$. If $A \subset \Omega$ is a bounded set with $\bar{A} \subset \Omega$, then $\psi(A)$ has content zero in \mathbb{R}^{p}.
Proof. Let $\Omega_{0}=\Omega \times \mathbb{R}^{p-r}$. Then Ω_{0} is open in \mathbb{R}^{p}.
Define $\phi: \Omega_{0} \rightarrow \mathbb{R}^{p}$ by

$$
\phi\left(x_{1}, \ldots, x_{r}, x_{r+1}, \ldots, x_{p}\right)=\psi\left(x_{1}, \ldots, x_{r}\right) .
$$

Thus $\phi \in C^{1}\left(\Omega_{0}\right)$.
Let $A_{0}=A \times\{(0, \ldots, 0)\}$. Then $\bar{A}_{0} \subset \Omega_{0}$ and A_{0} has content zero in \mathbb{R}^{p}.
It follows that $\psi(A)=\phi\left(A_{0}\right)$ has content zero in \mathbb{R}^{p}.
Theorem. Let $\Omega \subseteq \mathbb{R}^{p}$ be open, $\phi: \Omega \rightarrow \mathbb{R}^{p}$ belong to Class $C^{1}(\Omega)$. Suppose that A has content, $\bar{A} \subset \Omega$, and the Jacobian determinant $J_{\phi}(x)=\operatorname{det}(d \phi)(x) \neq 0$ for all $x \in \operatorname{Int}(A)$. Then $\phi(A)$ has content.
Proof. Since $\phi(\bar{A})$ is compact and $\phi(A) \subseteq \phi(\bar{A}), \phi(A)$ is bounded in \mathbb{R}^{p}, and $\overline{\phi(A)} \subseteq \phi(\bar{A})$.
Now $\partial \phi(A) \cup \operatorname{Int}(\phi(A))=\overline{\phi(A)} \subseteq \phi(\bar{A})=\phi(\operatorname{Int}(A) \cup \partial A)$,
and since $\phi \in C^{1}(\Omega)$ and $J_{\phi}(x) \neq 0$ for all $x \in \operatorname{Int}(A)$, we conclude that $\phi(\operatorname{Int}(A)) \subseteq \operatorname{Int}(\phi(A))$ by the inverse function theorem.
Hence, we infer that $\partial \phi(A) \subseteq \phi(\partial A)$, and $c(\partial \phi(A))=0$.
Thus $\phi(A)$ has content.
Corollary. Let $\Omega \subseteq \mathbb{R}^{p}$ be open, $\phi: \Omega \rightarrow \mathbb{R}^{p}$ belong to Class $C^{1}(\Omega)$ and be injective on Ω.
If A has content, $\bar{A} \subset \Omega$, and $J_{\phi}(x) \neq 0$ for all $x \in \operatorname{Int}(A)$.
Then $\partial \phi(A)=\phi(\partial A)$.
Proof. The proof of the inclusion $\phi(\partial A) \supseteq \partial \phi(A)$ is given in the proof of the proceeding theorem.
To establish the identity $\partial \phi(A)=\phi(\partial A)$, we only need to show the that $\phi(\partial A) \subseteq \partial \phi(A)$.
Let $x \in \partial A$, then there exists a sequence $\left\{x_{n}\right\}$ in A and a sequence $\left\{y_{n}\right\}$ in $\Omega \backslash A$, such that $\lim _{n \rightarrow \infty} x_{n}=x=\lim _{n \rightarrow \infty} y_{n}$.
Since ϕ is continuous, we have $\lim _{n \rightarrow \infty} \phi\left(x_{n}\right)=\phi(x)=\lim _{n \rightarrow \infty} \phi\left(y_{n}\right)$.
On the other hand, since ϕ is injective on $\Omega, \phi\left(y_{n}\right) \notin \phi(A)$.
Thus $\phi(x) \in \partial \phi(A)$ which implies that $\phi(\partial A) \subseteq \partial \phi(A)$.
Theorem. Let

$$
\begin{aligned}
L \in \mathscr{L}\left(\mathbb{R}^{p}\right) & =\left\{L: \mathbb{R}^{p} \rightarrow \mathbb{R}^{p} \mid L=\left(l_{i j}\right) \text { is an } p \times p \text { matrix over } \mathbb{R}\right\} \\
& =\text { the space of linear mappings on } \mathbb{R}^{p},
\end{aligned}
$$

and let $A \in \mathscr{D}\left(\mathbb{R}^{p}\right)$.
Then $c(L(A))=|\operatorname{det} L| c(A)$.
Outline of the Proof. If det $L=0$, then $L\left(\mathbb{R}^{p}\right)=\mathbb{R}^{r}$ for some $r<p$, and that $c(L(A))=0$ for all $A \in \mathscr{D}\left(\mathbb{R}^{p}\right)$.
If $\operatorname{det} L \neq 0$, and if $A \in \mathscr{D}\left(\mathbb{R}^{p}\right)$, then $L(A) \in \mathscr{D}\left(\mathbb{R}^{p}\right)$.
Also, note that
(1) if $A \in \mathscr{D}\left(\mathbb{R}^{p}\right)$, then $L(A)$ has content and $c(L(A)) \geq 0$.
(2) suppose $A, B \in \mathscr{D}\left(\mathbb{R}^{p}\right)$ and $A \cap B=\emptyset$, then $L(A) \cap L(B)=\emptyset$ and $c(L(A \cup B))=c(L(A) \cup L(B))=$ $c(L(A))+c(L(B))$.
(3) if $x \in \mathbb{R}^{p}$ and $A \in \mathscr{D}\left(\mathbb{R}^{p}\right)$, then $L(x+A)=L(x)+L(A)$ and $c(L(x+A))=c(L(A))$.

These imply that
(i) there exists a constant $m_{L} \geq 0$ such that $c(L(A))=m_{L} c(A)$ for all $A \in \mathscr{D}\left(\mathbb{R}^{p}\right)$.
(ii) if $L, M \in \mathscr{L}\left(\mathbb{R}^{p}\right)$ are nonsingular maps and if $A \in \mathscr{D}\left(\mathbb{R}^{p}\right)$, since $m_{L \circ M} c(A)=c(L \circ M(A))=$ $m_{L} c(M(A))=m_{L} m_{M} c(A)$, we have $m_{L \circ M}=m_{L} m_{M}$.
(iii) one can show that $m_{L}=\mid$ det $L \mid$ since every nonsingular $L \in \mathscr{L}\left(\mathbb{R}^{p}\right)$ is the composition of linear maps of the following three forms:
(a) $L_{1}\left(x_{1}, \ldots, x_{p}\right)=\left(\alpha x_{1}, x_{2}, \ldots, x_{p}\right)$ for some $\alpha \neq 0$;
(b) $L_{2}\left(x_{1}, \ldots, x_{i}, x_{i+1}, \ldots, x_{p}\right)=\left(x_{1}, \ldots, x_{i+1}, x_{i}, \ldots, x_{p}\right)$;
(c) $L_{3}\left(x_{1}, \ldots, x_{p}\right)=\left(x_{1}+x_{2}, x_{2}, \ldots, x_{p}\right)$.

If $K_{0}=[0,1) \times \cdots \times[0,1)$ in \mathbb{R}^{p}, then one can show that

$$
\begin{gathered}
m_{L_{1}}=m_{L_{1}} c\left(K_{0}\right)=c\left(L_{1}\left(K_{0}\right)\right)=|\alpha|=\left|\operatorname{det} L_{1}\right|, \\
m_{L_{2}}=m_{L_{2}} c\left(K_{0}\right)=c\left(L_{2}\left(K_{0}\right)\right)=1=\left|\operatorname{det} L_{2}\right|, \\
m_{L_{3}}=m_{L_{3}} c\left(K_{0}\right)=c\left(L_{3}\left(K_{0}\right)\right)=1=\left|\operatorname{det} L_{3}\right| .
\end{gathered}
$$

Hence, we have $m_{L}=|\operatorname{det} L|$.
Lemma. Let $K \subset \mathbb{R}^{p}$ be a closed cell with center $0, \Omega$ be an open set containing K and $\psi: \Omega \rightarrow \mathbb{R}^{p}$ belong to Class $C^{1}(\Omega)$ and be injective. Suppose further that $J_{\psi}(x) \neq 0$ for $x \in K$ and that $\|\psi(x)-x\| \leq \alpha\|x\|$ for $x \in K$, and some constant $0<\alpha<\frac{1}{\sqrt{p}}$. Then

$$
(1-\alpha \sqrt{p})^{p} \leq \frac{c(\psi(K))}{c(K)} \leq(1+\alpha \sqrt{p})^{p}
$$

Proof. If the side length of K is $2 r$ and if $x \in \partial K$, then we have

$$
r \leq\|x\| \leq r \sqrt{p}
$$

This implies that

$$
\|\psi(x)-x\| \leq \alpha\|x\| \leq \alpha r \sqrt{p},
$$

i.e. $\psi(x)$ is within distance $\alpha r \sqrt{p}$ of $x \in \partial K$.

Note that $\mathbb{R}^{p} \backslash \partial K$ is a disjoint union of two nonempty open sets. Let
C_{i} be an open cell with center 0 and side length $2(1-\alpha \sqrt{p}) r$,
C_{o} be a closed cell with center 0 and side length $2(1+\alpha \sqrt{p}) r$.
Then we have $C_{i} \subset \psi(K) \subset C_{o}$, which implies that
$(1-\alpha \sqrt{p})^{p} c(K)=(1-\alpha \sqrt{p})^{p}(2 r)^{p}=c\left(C_{i}\right) \leq c(\psi(K)) \leq c\left(C_{o}\right)=(1+\alpha \sqrt{p})^{p}(2 r)^{p}=(1+\alpha \sqrt{p})^{p} c(K)$.
The Jacobian Theorem. Let $\Omega \subseteq \mathbb{R}^{p}$ be open, $\phi: \Omega \rightarrow \mathbb{R}^{p}$ belong to Class $C^{1}(\Omega)$, and be injective on Ω with $J_{\phi}(x) \neq 0$ for $x \in \Omega$. Let A have content and satisfy that $\bar{A} \subset \Omega$. If $\epsilon>0$ is given, then there exists $\gamma>0$ such that if K is a closed cell with center $x \in A$ and side length less than 2γ, then

$$
\left|J_{\phi}(x)\right|(1-\epsilon)^{p} \leq \frac{c(\phi(K))}{c(K)} \leq\left|J_{\phi}(x)\right|(1+\epsilon)^{p} .
$$

Proof. For each $x \in \Omega$, let $L_{x}=(d \phi(x))^{-1}$, then $1=\operatorname{det}\left(L_{x} \circ d \phi(x)\right)=\left(\operatorname{det} L_{x}\right)(\operatorname{det} d \phi(x))$, it follows that $\operatorname{det} L_{x}=\frac{1}{\operatorname{det} d \phi(x)}=\frac{1}{J_{\phi}(x)}$.
Let Ω_{1} be a bounded open subset of Ω such that

$$
\bar{A} \subset \Omega_{1} \subset \bar{\Omega}_{1} \subseteq \Omega
$$

and $\operatorname{dist}\left(A, \partial \Omega_{1}\right)=2 \delta>0$.
Since $\phi \in C^{1}(\Omega)$, the entries in the standard matrix for L_{x} are continuous
There exists a constant $M>0$ such that $\left\|L_{x}\right\|_{p p} \leq M$ for all $x \in \Omega_{1}$.
Let $0<\epsilon<1$ be a constant.
Since $d \phi$ is uniformly continuous on Ω_{1}, there exists β with $0<\beta<\delta$ such that if $x_{1}, x_{2} \in \Omega_{1}$ and $\left\|x_{1}-x_{2}\right\| \leq \beta$, then $\left\|d \phi\left(x_{1}\right)-d \phi\left(x_{2}\right)\right\|_{p p} \leq \epsilon / M \sqrt{p}$.
Now let $x \in A$ be given, hence if $\|z\| \leq \beta$, then $x, x+z \in \Omega_{1}$.
Hence,

$$
\begin{aligned}
\|\phi(x+z)-\phi(x)-d \phi(x)(z)\| & \leq\|z\| \sup _{0 \leq t \leq 1}\|d \phi(x+t z)-d \phi(x)\|_{p p} \\
& \leq \frac{\epsilon}{M \sqrt{p}}\|z\|
\end{aligned}
$$

This implies that for a fixed $x \in A$ and for each $\|z\| \leq \beta$ if we set

$$
\psi(z)=L_{x}[\phi(x+z)-\phi(x)]
$$

Then we have

$$
\begin{aligned}
\|\psi(z)-z\| & =\left\|L_{x}[\phi(x+z)-\phi(x)-d \phi(x)(z)]\right\| \\
& \leq M\|z\| \sup _{0 \leq t \leq 1}\|d \phi(x+t z)-d \phi(x)\|_{p p} \\
& \leq \frac{\epsilon}{\sqrt{p}}\|z\| \text { for }\|z\| \leq \beta
\end{aligned}
$$

If K_{1} is any closed cell with center 0 and contained in the open ball with radius β, then

$$
(1-\epsilon)^{p} \leq \frac{c\left(\psi\left(K_{1}\right)\right)}{c\left(K_{1}\right)} \leq(1+\epsilon)^{p}
$$

It follows that if $K=x+K_{1}$ then K is a closed cell with center x and that $c(K)=c\left(K_{1}\right)$ and

$$
c\left(\psi\left(K_{1}\right)\right)=\left|\operatorname{det} L_{x}\right| c\left(\phi\left(x+K_{1}\right)-\phi(x)\right)=\frac{1}{J_{\phi}(x)} c(\phi(K)) .
$$

This establishes the inequality

$$
\left|J_{\phi}(x)\right|(1-\epsilon)^{p} \leq \frac{c(\phi(K))}{c(K)} \leq\left|J_{\phi}(x)\right|(1+\epsilon)^{p} .
$$

for those closed cell K with center $x \in A$ and side length less than $2 \gamma=2 \beta / \sqrt{p}$.
Change of Variables Theorem. Let $\Omega \subseteq \mathbb{R}^{p}$ be open, $\phi: \Omega \rightarrow \mathbb{R}^{p}$ belong to Class $C^{1}(\Omega)$, and be injective on Ω, and $J_{\phi}(x) \neq 0$ for $x \in \Omega$. Suppose that A has content, $\bar{A} \subset \Omega$, and $f: \phi(A) \rightarrow \mathbb{R}$ is bounded and continuous.
Then $\int_{\phi(A)} f=\int_{A}(f \circ \phi)\left|J_{\phi}\right|$.
Example. Find $\iint_{S}\left(x^{2}+y^{2}\right) d A$ if S be the region in the first quadrant bounded by the curves $x y=1, x y=3, x^{2}-y^{2}=1$, and $x^{2}-y^{2}=4$. Setting $u=x^{2}-y^{2}, v=x y$, we have $\iint_{S}\left(x^{2}+y^{2}\right) d A=$ $\int_{v=1}^{v=3} \int_{u=1}^{u=4} \frac{1}{2} d u d v=3$.
Example. $\left(\int_{0}^{\infty} e^{-x^{2}} d x\right)^{2}=\int_{0}^{\infty} \int_{0}^{\infty} e^{-x^{2}-y^{2}} d x d y=\int_{0}^{\pi / 2} \int_{0}^{\infty} r e^{-r^{2}} d r d \theta=\frac{\pi}{2}$.

Summary.

(a) Let $A \subset \mathbb{R}^{n}$. Define what it means to say that A has content (or A is Jordan measurable).
(b) Let $A \subset \mathbb{R}^{n}$. Define the content $c(A)$ of A when A has content (or A is Jordan measurable).
(c) Let $A \subset \mathbb{R}^{n}$. Define what it means to say that A has content (or measure) $c(A)$ zero.
(d) Let A be a bounded subset of \mathbb{R}^{n}, and let f be a bounded function defined on A to \mathbb{R}. Define what it means to say that f is integrable on A. Give a class of A and a class of f from which $\int_{A} f$ exists.
(e) Let A be a bounded subset of \mathbb{R}^{n} and let f be an integrable function defined on A to \mathbb{R}. Discuss the continuity of f on A.
(f) Let A be a bounded subset of \mathbb{R}^{n} and let f be a continuous function defined on A to \mathbb{R}. Discuss the integrability of f on A ?
(g) Let A be a bounded subset of \mathbb{R}^{n}, let f, g be integrable functions defined on A to \mathbb{R}, and let $a, b \in \mathbb{R}$. Discuss the integrability of $a f+b g$ and $f g$ on A.
(h) Let A be a bounded subset of \mathbb{R}^{n} and let $\left\{f_{n}\right\}$ be a sequence of integrable function defined on A to \mathbb{R}. Assume that $f(x)=\lim f_{n}(x)$ exists for each $x \in A$. Discuss the integrability of f on A, and conditions on which the equality $\lim \int_{A} f_{n}=\int_{A} \lim f_{n}$ holds.
(i) Let $\Omega \subseteq \mathbb{R}^{p}$ be open and let $\phi: \Omega \rightarrow \mathbb{R}^{p}$ belong to Class $C^{1}(\Omega)$. Suppose that A has content (or A is measurable), $\bar{A} \subset \Omega$. Discuss the measurability of $\phi(A)$.
(j) Let $\Omega \subseteq \mathbb{R}^{p}$ be open and let $\phi: \Omega \rightarrow \mathbb{R}^{p}$ belong to Class $C^{1}(\Omega)$. Suppose that A has content zero and if $\bar{A} \subset \Omega$, discuss the measurability of $\phi(A)$.
(k) Let $L \in \mathscr{L}\left(\mathbb{R}^{p}\right)=\left\{B: \mathbb{R}^{p} \rightarrow \mathbb{R}^{p} \mid B=\left(b_{i j}\right)\right.$ is an $p \times p$ matrix over $\left.\mathbb{R}\right\}=$ the space of linear mappings on \mathbb{R}^{p}, and let $A \in \mathscr{D}\left(\mathbb{R}^{p}\right)$. Find $c(L(A))$.
(l) Let $\Omega \subseteq \mathbb{R}^{p}$ be open and let $\phi: \Omega \rightarrow \mathbb{R}^{p}$ belong to Class $C^{1}(\Omega)$. Then $d \phi(x): \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}$ is a linear mapping in $\mathscr{L}\left(\mathbb{R}^{p}\right)$. If $J_{\phi(x)} \neq 0$ for all $x \in \Omega$ and suppose that A has content (or A is measurable), $\bar{A} \subset \Omega$. Discuss the geometric meaning of $d \phi(x)(v)$ for each $v \in \mathbb{R}^{p}$, and the influence of $d \phi(x)$ on the volume element of A at x.

